Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-24T03:12:38.191Z Has data issue: false hasContentIssue false

Consequences of a Fat Diet in the Distribution of Minerals within Pancreatic Tissues of Rats and Rabbits

Published online by Cambridge University Press:  09 October 2012

M. Dolores Ynsa*
Affiliation:
Centro de Micro-Análisis de Materiales, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain Dpto. Física Aplicada C-12, Universidad Autónoma de Madrid, 28049 Madrid, Spain Instituto de Ciencia de Materiales Nicolás Cabrera, Univ. Autónoma de Madrid, E-28049 Madrid, Spain
Ren Minquin
Affiliation:
Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore117542
Reshmi Rajendran
Affiliation:
Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore117542
Teresa Pinheiro
Affiliation:
Instituto Tecnológico e Nuclear & Centro de Física Nuclear, Fundação da Faculdade de Ciências, Universidade de Lisboa, Portugal
Frank Watt
Affiliation:
Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore117542
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

The effects of plasma lipid overload on pancreatic islet function and on mineral imbalance are issues under debate. However, the outcomes may be biased by the different metabolisms of different species. This prospective study evaluated whether a high fat diet intake changed the distribution of physiologically relevant elements within pancreatic endocrine and exocrine tissues of Sprague Dawley rats and New Zealand White rabbits. Nuclear microscopy techniques provided images of the specimen density and structure as well as the elemental distributions and quantification of P, S, Cl, K, Ca, Fe, and Zn using unstained cryosections of pancreas. Our results indicate that pancreatic islets in normal rats and rabbits had lower tissue density and higher Ca, Fe, and Zn content compared to exocrine tissue, and that rabbit islets exhibit the highest Zn content (3,300 μg/g in rabbits versus 510 μg/g in rats). Fat diet intake resulted in large deposits of fat in the pancreas, which modified the density contrast of tissues and also resulted in a twofold decrease of Ca and Zn concentrations in islets of both rats and rabbits. This result indicates that a fat diet leads to a reduction in essential trace element concentrations in pancreas, which in turn may hamper endocrine function.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ballian, N. & Brunicardi, F.C. (2007). Islet vasculature as a regulator of endocrine pancreas function. World J Surg 31, 705714.Google Scholar
Beyersmann, D. & Haase, H. (2001). Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14, 331341.Google Scholar
Bock, T., Pakkenberg, B. & Buschard, K. (2003). Increased islet volume but unchanged islet number in ob/ob mice. Diabetes 52, 17161722.Google Scholar
Bovee-Oudenhoven, I.M., Wissink, M.L., Wouters, J.T. & Van der Meer, R. (1999). Dietary calcium phosphate stimulates intestinal lactobacilli and decreases the severity of a salmonella infection in rats. J Nutr 129, 607612.Google Scholar
Breese, M.B.H., Jamieson, D.N. & King, P.J.C. (1996). Materials Analysis Using a Nuclear Microprobe. New York: John Wiley & Sons, Inc. Google Scholar
Dandona, P., Aljada, A., Chaudhuri, A., Nohanty, P. & Garg, R. (2005). Metabolic syndrome. A comprehensive perspective based on interactions between obesity, diabetes and inflammation. Circulation 111, 14481454.Google Scholar
El-Assaad, W., Buteau, J., Peyot, M.L., Nolan, C., Roduit, R., Hardy, S., Joly, E., Dbaibo, G., Rosenberg, L. & Prentki, M. (2003). Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology 144, 41544163.Google Scholar
Eliasson, E., Abdulkader, F., Braun, M., Galvanovskis, J., Hoppa, M.B. & Rorsman, P. (2008). Novel aspects of the molecular mechanisms controlling insulin secretion. J Physiol 586, 33133324.Google Scholar
Feng, W., Qian, Q., Ding, W. & Chai, Z. (2001). Tissue contents and subcellular distribution of chromium and other trace metals in experimental diabetic rats after intravenous injection of Cr 50-enriched stable isotopic tracer solution. Metabolism 50, 11681174.CrossRefGoogle ScholarPubMed
Gromada, J., Franklin, I. & Wollheim, C.B. (2007). Beta-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocrine Rev 28, 84116.Google Scholar
Guyton, A.C. & Hall, J.E. (2000). Textbook of Medical Physiology, 10th ed. Philadelphia, PA: W.B. Saubers Company.Google Scholar
Hao, M., Head, W.S., Gunawardana, S.C., Hasty, A.H. & Piston, D.W. (2007). Direct effect of cholesterol on insulin secretion: A novel mechanism for pancreatic beta-cell dysfunction. Diabetes 56, 23282338.Google Scholar
Juntti-Berggren, L., Lindh, U. & Berggren, P.O. (1991). Starvation is associated with changes in the elemental composition of the pancreatic beta-cell. Biosci Rep 11, 7384.Google Scholar
Kawamori, D., Kurpad, A.J., Hu, J., Liew, C.W., Shih, J.L., Ford, E.L., Herrera, P.L., Polonsky, K.S., McGuinness, O.P. & Kulkarni, R.N. (2009). Insulin signaling in alpha cells modulates glucagon secretion in vivo . Cell Metabolism 9, 350361.Google Scholar
Maxwell, J.A., Campbell, J.L. & Teesdale, W.J. (1989). The Guelph PIXE software package. Nucl Instrum Methods B 43, 218230.Google Scholar
Mayer, M. (1997). SIMNRA User's Guide, Technical Report IPP 9/113. Garching, Germany: Max-Planck-Institut für Plasmaphysik. Google Scholar
Nolan, C.J., Madiraju, M.S.R., Delghingaro-Augusto, V., Peyot, M. & Prentki, M. (2006). Fatty acid signalling in the b-cell and insulin secretion. Diabetes 55, S16S23.Google Scholar
Papakonstantinou, E., Flatt, W.P., Huth, P.J. & Harris, R.B.S. (2003). High dietary calcium reduces body fat content, digestibility of fat, and serum vitamin D in rats. Obes Res 11, 387394.CrossRefGoogle ScholarPubMed
Peyot, M-L., Guay, C., Latour, M.G., Lamontagne, J., Lussier, R., Pineda, M., Ruderman, N.B., Haemmerle, G., Zechner, R., Joly, E., Madiraju, S.R.M., Poitout, V. & Prentki, M. (2009). Adipose triglyceride lipase is implicated in fuel- and non-fuel-stimulated insulin secretion. J Biol Chem 284, 1684816859.Google Scholar
Pinnick, K.E., Collins, S.C., Londos, C., Gauguier, D., Clark, A. & Fielding, B.A. (2008). Pancreatic ectopic fat is characterized by adipocyte infiltration and altered lipid composition. Obesity 16, 522530.Google Scholar
Poitout, V. & Robertson, R.P. (2008). Glucolipotoxicity: Fuel excess and β-cell dysfunction. Endocr Rev 29, 351366.Google Scholar
Ravier, M.A. & Rutter, G.A. (2005). Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells. Diabetes 54, 17891797.Google Scholar
Saltiel, A.R. & Kahn, C.R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799806.Google Scholar
Saudek, F., Brogren, C.H. & Manohar, S. (2008). Imaging the beta-cell mass: Why and how. Rev Diabet Stud 5, 612.Google Scholar
Slucca, M., Harmon, J.S., Oseid, E.A., Bryan, J. & Robertson, R.P. (2010). ATP-sensitive K+ channel mediates the zinc switch-off signal for glucagon response during glucose deprivation. Diabetes 59, 128134.CrossRefGoogle ScholarPubMed
Stein, D.T., Stevenson, B.E., Chester, M.W., Basit, M., Daniels, M.B., Turley, S.D. & McGarry, J.D. (1997). The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J Clin Invest 100, 398403.Google Scholar
Tittle, R.K. & Hume, R.I. (2008). Opposite effects of zinc on human and rat p2x2 receptors. J Neurosci 28, 1113111140.Google Scholar
Tobia, M.H., Zdanowicz, M.M., Wingertzahn, M.A., McHeffey-Atkinson, B., Slonim, A.E. & Wapnir, R.A. (1998). The role of dietary zinc in modifying the onset and severity of spontaneous diabetes in the BB Wistar rat. Mol Gen Metabol 63, 205213.Google Scholar
Tsuchiya, M., Hosaka, M., Moriguchi, T., Zhang, S., Suda, M., Yokota-Hashimoto, H., Shinozuka, K. & Takeuchi, T. (2010). Cholesterol biosynthesis pathway intermediates and inhibitors regulate glucose-stimulated insulin secretion and secretory granule formation in pancreatic β-cells. Endocrinology 151, 47054716.Google Scholar
Wagner, T.F.J., Drews, A., Loch, S., Mohr, F., Philipp, S.E., Lambert, S. & Oberwinkler, J. (2010). TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Eur J Physiol 460, 755765.Google Scholar
Watt, F., Orlic, I., Loh, K.K., Sow, C.H., Thong, P., Liew, S.C., Osipowicz, T., Choo, T.F. & Tang, S.M. (1994). The National University of Singapore nuclear microscope facility. Nucl Instrum Methods B 85, 708715.Google Scholar
Ynsa, M.D., Minquin, R., Rajendran, R., Sidhapuriwala, J.N., van Kan, J.A., Bhatia, M. & Watt, F. (2009). Zinc mapping and density imaging of rabbit pancreas endocrine tissue sections using nuclear microscopy. Microsc Microanal 15, 345352.Google Scholar
Zhou, H., Zhang, T., Harmon, J.S., Bryan, J & Robertson, R.P. (2007). Zinc, not insulin, regulates the rat a-cell response to hypoglycemia in vivo . Diabetes 56, 11071112.Google Scholar