Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T20:00:50.288Z Has data issue: false hasContentIssue false

Comparative Studies on Local Barrier Field Variations Above Field-Adsorbed Helium and Neon with a Micro-Probe Hole Field Ion Microscope

Published online by Cambridge University Press:  05 September 2022

Yasushi Ohta
Affiliation:
Department of Applied Physics and Electronics, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
Ataru Kobayashi*
Affiliation:
Department of Applied Physics and Electronics, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
*
*Corresponding author: Ataru Kobayashi, E-mail: [email protected]
Get access

Abstract

The local field ion emission properties of helium and neon around a step edge atom of W(112) were examined at liquid nitrogen temperature using a micro-probe hole field ion microscope combined with a pulse-counting analysis. We have analyzed the mapped field ion densities obtained for both imaging gas atoms at their respective best local image voltages based on the formula for tunneling barrier strength and have evaluated the dipole moment of polarized adatom as well as the local field enhancement factor at the adatom site. We found that the dipole moments of helium and neon adatoms showed the same value, although the best local image field acting on the helium adatom is much higher than that on the neon adatom. We also found the same magnitude of local field enhancement factors for both noble gas field adsorptions. These results imply that the key to the best local image condition is the tunneling barrier field variations above the adatom. The vital role of the imaging gas atoms is to form an optimum dipole moment to create an ideal electric field distribution for the best local image appearance at each atom site depending on the different chemical nature of adatom species.

Type
Materials Science Applications
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brenner, SS & McKinney, JT (1970). Fim atom probe analysis of individual image spots caused by gas adsorption. Surf Sci 20, 411416.CrossRefGoogle Scholar
Dagan, M, Gault, B, Smith, GDW, Bagot, PAJ & Moody, MP (2017). Automated atom-by-atom three-dimensional (3D) reconstruction of field ion microscopy data. Microsc Microanal 23, 255268.CrossRefGoogle ScholarPubMed
Deane, JHB & Forbes, RG (2008). The formal derivation of an exact series expansion for the principal Schottky-Nordheim barrier function v, using the Gauss hypergeometric differential equation. J Phys A 41, 395301.CrossRefGoogle Scholar
de Castilho, CMC & Kingham, DR (1986 a). Calculations of field ionization in the field ion microscope. Surf Sci 173, 7596.CrossRefGoogle Scholar
de Castilho, CMC & Kingham, DR (1986 b). Best image conditions in field ion microscopy. J Phys Colloques 47-C2, 2329.Google Scholar
Domke, M, Hummel, E & Block, JH (1978). Temperature effects on appearance potentials of gas phase field ions. Surf Sci 78, 307323.CrossRefGoogle Scholar
Ernst, N (1989). Field adsorption of helium and neon on tungsten: An energy-resolved atom-probe study. Surf Sci 219, 132.CrossRefGoogle Scholar
Ernst, N, Bozdech, G, Schmidt, H, Schmidt, WA & Larkins, GL (1993). On the full-width-at-half-maximum of field ion energy distributions. Appl Surf Sci 67, 111117.CrossRefGoogle Scholar
Ernst, N, Drachsel, W, Li, Y, Block, JH & Kreuzer, HJ (1986). Field adsorption of helium on tungsten. Phys Rev Lett 57, 26862689.CrossRefGoogle ScholarPubMed
Forbes, RG (1976). A generalized theory of standard field ion appearance energies. Surf Sci 61, 221240.CrossRefGoogle Scholar
Forbes, RG (1985). Seeing atoms: The origin of local contrast in field-ion images. J Phys D: Appl Phys 18, 9731018.CrossRefGoogle Scholar
Forbes, RG (1996). Field-ion imaging old and new. Appl Surf Sci 94/95, 116.CrossRefGoogle Scholar
Forbes, RG & Deane, JHB (2007). Reformulation of the standard theory of Fowler-Nordheim tunnelling and cold field electron emission. Proc R Soc A 463, 29072927.CrossRefGoogle Scholar
Forbes, RG & Deane, JHB (2011). Transmission coefficients for the exact triangular barrier: An exact general analytical theory that can replace Fowler & Nordheim's 1928 theory. Proc R Soc A 467, 29272947.CrossRefGoogle Scholar
Forbes, RG, Kreuzer, HJ & Wang, RLC (1996). On the theory of helium field adsorption. Appl Surf Sci 94/95, 6067.CrossRefGoogle Scholar
Gomer, R (1961). Field Emission and Field Ionization. Cambridge, USA: Harvard Univ. Press, reprint in 1993, New York, USA: Amer. Inst. Phys.Google Scholar
Gurney, RW & Condon, EU (1929). Quantum mechanics and radioactive disintegration. Phys Rev 33, 127140.CrossRefGoogle Scholar
Halpern, B & Gomer, R (1969). Field ionization in liquids. J Chem Phys 51, 10481056.CrossRefGoogle Scholar
Heinz, K & Müller, K (1982). LEED Intensities – experimental progress and new possibilities of surface structure determination. In Structural Studies of Surfaces, Höhler, G (Ed.), pp. 153. Springer Tracts in Modern Physics 91, Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Homeier, HHH & Kingham, DR (1983). Effects of local field variations on the contrast of a field-ion microscope. J Phys D 16, L115L120.CrossRefGoogle Scholar
Katnagallu, S, Dagan, M, Parviainen, S, Nematollahi, A, Grabowski, B, Bagot, PAJ, Rolland, N, Neugebauer, J, Raabe, D, Vurpillot, F, Moody, MP & Gault, B (2018). Impact of local electrostatic field rearrangement on field ionization. J Phys D: Appl Phys 51, 105601.CrossRefGoogle Scholar
Kingham, DR, Homeier, HHH & de Castilho, CMC (1985). Resolution and contrast in the field ion microscope. Surf Sci 152/153, 5562.CrossRefGoogle Scholar
Kreuzer, HJ (1991). Physics and chemistry in high electric fields. Surf Sci 246, 336347.CrossRefGoogle Scholar
Kreuzer, HJ, Wang, LC & Lang, ND (1992). Self-consistent calculation of atomic adsorption of metals in high electric fields. Phys Rev B 45, 1205012055.CrossRefGoogle ScholarPubMed
Kurokawa, S, Yamashita, Y, Sakai, A & Hasegawa, Y (2001). Scanning tunneling microscopy barrier-height imaging of Shockley dislocations on a Au(111) reconstructed surface. Jpn J Appl Phys 40, 42774280.CrossRefGoogle Scholar
Medvedev, VK, Kulik, VS, Chernyi, VI & Yu, S (1997). Weakly chemisorbed CO layer on Rh(100) as detected by reverse flash and field ion appearance energy measurements. Vacuum 48, 341345.CrossRefGoogle Scholar
Michaelson, HB (1977). The work function of the elements and its periodicity. J Appl Phys 48, 47294733.CrossRefGoogle Scholar
Miller, MK, Cerezo, A, Hetherington, MG & Smith, GDW (2005). Atom Probe Field Ion Microscopy. New York: Clarendon Press.Google Scholar
Miller, MK & Forbes, RG (2014). Atom-Probe Tomography: The Local Electrode Atom Probe. New York, USA: Springer.CrossRefGoogle Scholar
Müller, EW (1951). Das Feldionenmikroskop. Z Physik 131, 136142.CrossRefGoogle Scholar
Müller, EW (1969). Field-ion microscopy and the electronic structure of metal surfaces. Quart Rev Chem Soc 23, 177186.CrossRefGoogle Scholar
Müller, EW & Krishnaswamy, SV (1973). Energy spectrum of field ionization at a single atomic site. Surf Sci 36, 2947.CrossRefGoogle Scholar
Müller, EW, McLane, SB & Panitz, JA (1969). Field adsorption and desorption of helium and neon. Surf Sci 17, 430438.CrossRefGoogle Scholar
Müller, EW, Panitz, JA & McLane, SB (1968). The atom-probe field Ion microscope. Rev Sci Instrum 39, 8385.CrossRefGoogle Scholar
Müller, EW & Tsong, TT (1969). Field Ion Microscopy: Principle and Applications. New York, USA: Elsevier.CrossRefGoogle Scholar
Müller, EW & Young, RD (1961). Determination of field strength for field evaporation and ionization in the field ion microscope. J Appl Phys 32, 24252427.CrossRefGoogle Scholar
Nakamura, S & Kuroda, T (1969). On field-evaporation end forms of a bcc metal surface observed by a field ion microscope. Surf Sci 17, 346358.CrossRefGoogle Scholar
Ohta, Y, Kobayashi, A & Nakayama, M (2020). Study on the local barrier field variations for electron tunneling in field ionization at a step edge of W(112) with a micro-probe hole field ion microscope. Jpn J Appl Phys 59, 015004.CrossRefGoogle Scholar
Plummer, EW & Rhodin, TN (1968). Atomic binding of transition metals on clean single-crystal tungsten surfaces. J Chem Phys 49, 34793496.CrossRefGoogle Scholar
Sakurai, T & Müller, EW (1973). Field calibration using the energy distribution of field ionization. Phys Rev Lett 30, 532535.CrossRefGoogle Scholar
Sakurai, T & Müller, EW (1975). Field ionization within the forbidden zone. Surf Sci 49, 497507.CrossRefGoogle Scholar
Sakurai, T & Müller, EW (1977). Field calibration using the energy distribution of a free-space field ionization. J Appl Phys 48, 26182625.CrossRefGoogle Scholar
Schmidt, WA, Ernst, N & Suchorski, Y (1993). Local electric fields at individual atomic surface site: Field ion appearance energy measurements. Appl Surf Sci 67, 101110.CrossRefGoogle Scholar
Schmidt, W, Reisner, T & Krautz, E (1971). Field ion microscopic observation of interaction phenomena of neon atoms with platinum and platinum-gold alloy surfaces. Surf Sci 26, 297302.CrossRefGoogle Scholar
Schmidt, WA, Suchorski, Y & Block, JH (1994). New aspects of field adsorption and accommodation in field ion imaging. Surf Sci 301, 5260.CrossRefGoogle Scholar
Smith, R & Walls, JM (1978). Ion trajectories in the field-ion microscope. J Phys D: Appl Phys 11, 409419.CrossRefGoogle Scholar
Suchorski, Y, Schmidt, WA & Block, JH (1993). Enhanced local electric fields in field ionization at steps of clean and Au-covered Rh(111). Appl Surf Sci 67, 124127.CrossRefGoogle Scholar
Suchorski, Y, Schmidt, WA & Block, JH (1994 a). Local electric fields above individual surface atoms in the presence of field-adsorbed rare gas atoms: An additional field enhancement. Appl Surf Sci 76/77, 101107.CrossRefGoogle Scholar
Suchorski, Y, Schmidt, WA, Block, JH & Kreuzer, HJ (1994 b). Comparative studies on field ionization at surface sites of Rh, Ag and Au-differences in local electric field enhancement. Vacuum 45, 259262.CrossRefGoogle Scholar
Suchorski, Y, Schmidt, WA, Ernst, N, Block, JH & Kreuzer, HJ (1995). Electrostatic fields above individual atoms. Prog Surf Sci 48, 121134.CrossRefGoogle Scholar
Totsuka, H, Gohda, Y, Fukuya, S & Watanabe, S (2002). First-principles study of apparent barrier height. Jpn J Appl Phys 41, L1172L1174.CrossRefGoogle Scholar
Tsong, TT & Müller, EW (1964). Measurement of the energy distribution in field ionization. J Chem Phys 41, 32793284.CrossRefGoogle Scholar
Wang, RLC, Kreuzer, HJ & Forbes, RG (1996). Field adsorption of helium and neon on metals: An integrated theory. Surf Sci 350, 183205.CrossRefGoogle Scholar
Webber, RD, Walls, JM & Smith, R (1978). Ring counting in field-ion micrograph. J Microsc 113, 291299.CrossRefGoogle Scholar
Wilkes, TJ, Smith, GDW & Smith, R (1974). On the quantitative analysis of field ion micrographs. Metallography 7, 403430.CrossRefGoogle Scholar
Witt, J & Müller, K (1986 a). Direct observation of reconstructed surfaces in the field ion microscope. Appl Phys A 41, 103106.CrossRefGoogle Scholar
Witt, J & Müller, K (1986 b). Computer-aided measurement of FIM intensities. J Phys Colloques 47-C2, 465470.Google Scholar
Young, RD (1959). Theoretical total-energy distribution of field-emitted electrons. Phys Rev 113, 110114.CrossRefGoogle Scholar