Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T00:40:43.088Z Has data issue: false hasContentIssue false

Comparative Analysis of Root Dentin Morphology and Structure of Human Versus Bovine Primary Teeth

Published online by Cambridge University Press:  08 May 2015

Bruna M. Costa
Affiliation:
Pediatric Dentistry Department, Piracicaba Dental School, University of Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil
Alexsandra S. Iwamoto
Affiliation:
Pediatric Dentistry Department, Piracicaba Dental School, University of Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil
Regina M. Puppin-Rontani
Affiliation:
Pediatric Dentistry Department, Piracicaba Dental School, University of Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil
Fernanda M. Pascon*
Affiliation:
Pediatric Dentistry Department, Piracicaba Dental School, University of Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil
*
*Corresponding author. [email protected]
Get access

Abstract

This study evaluated the structural and morphological differences between human and bovine primary root canals. Primary human maxillary central incisors (H) (n=9) and primary bovine incisors (B) (n=9) were selected. The roots were sectioned in the vestibular-lingual direction, planed and delimited in cervical, middle, and apical thirds. Tubule density (number of tubules per mm2) and diameter were analyzed by scanning electron microscopy (1,000 and 5,000×) using Image J 1.47 software. Data were submitted to two-way repeated measures ANOVA and Tukey tests (α=0.05). The highest tubule density was observed for B (28.527±1.717 mm2) compared with H (15.931±0.170 mm2) (p<0.01). Regarding root thirds, the cervical third presented a greater tubule density (26.417±11.654 mm2) than the apical third (17.999±5.873 mm2). The diameter of the dentin tubules was not different for cervical (3.50±0.08 µm), middle (3.45±0.30 µm) and apical thirds (3.42±0.33 µm) and substrate (H—3.29±0.14 µm; B—3.63±0.06 µm). It could be concluded that: (1) the radicular dentin structure of human and bovine primary teeth and root thirds differ in terms of the tubule density; (2) the radicular dentin morphology of human and bovine primary teeth and root thirds are similar in terms of the diameter of the dentin tubules.

Type
Biological Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bird, D.C., Komabayashi, T., Guo, L., Opperman, L.A. & Spears, R. (2012). In vitro evaluation of dentinal tubule penetration and biomineralization ability of a new root-end filling material. J Endod 38, 10931096.Google Scholar
Camargo, C.H., Siviero, M., Camargo, S.E., de Oliveira, S.H., Carvalho, C.A. & Valera, M.C. (2007). Topographical, diametral, and quantitative analysis of dentin tubules in the root canals of human and bovine teeth. J Endod 33, 422426.Google Scholar
Camargo, C.H.R., Bernardineli, N., Valera, M.C., de Carvalho, C.A.T., de Oliveira, L.D., Menezes, M.M., Afonso, S.E. & Mancini, M.N.G. (2006). Vehicle influence on calcium hydroxide pastes diffusion in human and bovine teeth. Dent Traumatol 22, 302306.CrossRefGoogle ScholarPubMed
Carda, C. & Peydró, A. (2006). Ultrastructural patterns of human dentinal tubules, odontoblasts processes and nerve fibres. Tissue Cell 38, 141150.Google Scholar
Dietschi, D., Ardu, S., Rossier-Gerber, A. & Krejci, I. (2006). Adaptation of adhesive post and cores to dentin after in vitro occlusal loading: Evaluation of post material influence. J Adhes Dent 8, 409419.Google Scholar
Evans, M.D., Baumgatner, J.C., Khemaleelakul, S.U. & Xia, T. (2003). Efficacy of calcium hydroxide: Chlorhexidine paste as an intracanal medication in bovine dentin. J Endod 29, 338339.CrossRefGoogle ScholarPubMed
Fonseca, R.B., Haiter-Neto, F., Carlo, H.L., Soares, C.J., Sinhoreti, M.A., Puppin-Rontani, R.M. & Correr-Sobrinho, L. (2008). Radiodensity and hardness of enamel and dentin of human and bovine teeth, varying bovine teeth age. Arch Oral Biol 53, 10231029.Google Scholar
Galhano, G., de Melo, R.M., Valandro, L.F. & Bottino, M.A. (2009). Comparison of resin push-out strength to root dentin of bovine- and human-teeth. Indian J Dent Res 20, 332336.Google ScholarPubMed
Gomes, B.P., Souza, S.F., Ferraz, C.C., Teixeira, F.B., Zaia, A.A., Valdrighi, L. & Souza-Filho, F.J. (2003). Effectiveness of 2% chlorhexidine gel and calcium hydroxide against Enterococcus faecalis in bovine root dentine in vitro. Int Endod J 36, 267275.CrossRefGoogle ScholarPubMed
Guerreiro-Tanomaru, J.M., Chula, D.G., de Pontes Lima, R.K., Berbert, F.L. & Tanomaru-Filho, M. (2012). Release and diffusion of hydroxyl ion from calcium hydroxide-based medicaments. Dent Traumatol 28, 320323.Google Scholar
Krifka, S., Börzsönyi, A., Koch, A., Hiller, K.A., Schmalz, G. & Friedl, K.H. (2008). Bond strength of adhesive systems to dentin and enamel—Human vs. bovine primary teeth in vitro. Dent Mater 24, 888894.Google Scholar
Laurance-Young, P., Bozec, L., Gracia, L., Rees, G., Lippert, F., Lynch, R.J. & Knowles, J.C. (2011). A review of the structure of human and bovine dental hard tissues and their physicochemical behavior in relation to erosive challenge and remineralization. J Dent 39, 266272.CrossRefGoogle Scholar
Lenzi, T.L., Guglielmi, Cde A., Arana-Chavez, V.E. & Raggio, D.P. (2013). Tubule density and diameter in coronal dentin from primary and permanent human teeth. Microsc Microanal 19, 14451449.CrossRefGoogle ScholarPubMed
Lopes, M.B., Sinhoreti, M.A., Correr Sobrinho, L. & Consani, S. (2003). Comparative study of the dental substrate used in shear bond strength tests. Pesq Odontol Bras 17, 171175.Google Scholar
Lopes, M.B., Sinhoreti, M.A., Gonini Júnior, A., Consani, S. & McCabe, J.F. (2009). Comparative study of tubular diameter and quantity for human and bovine dentin at different depths. Braz Dent J 20, 279283.Google Scholar
Marshall, G.W. Jr., Marshall, S.J., Kinney, J.H. & Balooch, M. (1997). The dentin substrate: Structure and properties related to bonding. J Dent 25, 441458.Google Scholar
Mellberg, J.R. (1992). Hard-tissue substrates for evaluation of cariogenic and anti-cariogenic activity in situ. J Dent Res 71, 913919.CrossRefGoogle ScholarPubMed
Moreira, D.M., Almeida, J.F., Ferraz, C.C., Gomes, B.P., Line, S.R. & Zaia, A.A. (2009). Structural analysis of bovine root dentin after use of different endodontics auxiliary chemical substances. J Endod 35, 10231027.Google Scholar
Ng, Y.L., Mann, V., Rahbaran, S., Lewsey, J. & Gulabivala, K. (2008). Outcome of primary root canal treatment: Systematic review of the literature—Part 2. Influence of clinical factors. Int Endod J 41, 631.CrossRefGoogle ScholarPubMed
Pascon, F.M., Kantovitz, K.R., Borges, A.F. & Puppin-Rontani, R.M. (2007). Effect of cleansers and irrigation methods on primary root dentin permeability. J Dent Child (Chic) 74, 3035.Google Scholar
Puppin-Rontani, R.M. & Caldo-Teixeira, A.S. (2003). Effect of sodium hypochlorite on the different substrates—A SEM analyses. Acta Microsc 12, 169173.Google Scholar
Rosa, R.A., Barreto, M.S., Moraes, Rdo A., Broch, J., Bier, C.A., , M.V., Kaizer, O.B. & Valandro, L.F. (2013). Influence of endodontic sealer composition and time of fiber post cementation on sealer adhesiveness to bovine root dentin. Braz Dent J 24, 241246.CrossRefGoogle ScholarPubMed
Rueggeberg, F.A. (1991). Substrate for adhesion testing to tooth structure—Review of the literature. Dent Mater 7, 210.Google Scholar
Schilke, R., Lisson, J.A., Bauss, O. & Geurtsen, W. (2000). Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation. Arch Oral Biol 45, 355361.CrossRefGoogle ScholarPubMed
Siqueira, J.F. Jr., Rôças, I.N. & Lopes, H.P. (2002). Patterns of microbial colonization in primary root canal infections. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93, 174178.CrossRefGoogle ScholarPubMed
Sisodia, R., Ravi, K.S., Shashikiran, N.D., Singla, S. & Kulkarni, V. (2014). Bacterial penetration along different root canal fillings in the presence or absence of smear layer in primary teeth. J Clin Pediatr Dent 38, 229234.CrossRefGoogle ScholarPubMed
Skene, L. (2002). Ownership of human tissue and the law. Nat Rev Genet 3, 145148.Google Scholar
Tjäderhane, L., Nascimento, F.D., Breschi, L., Mazzoni, A., Tersariol, I.L., Geraldeli, S., Tezvergil-Mutluay, A., Carrilho, M., Carvalho, R.M., Tay, F.R. & Pashley, D.H. (2013). Strategies to prevent hydrolytic degradation of the hybrid layer—A review. Dent Mater 29, 9991011.Google Scholar
Violich, D.R. & Chandler, N.P. (2010). The smear layer in endodontics—A review. Int Endod J 43, 215.Google Scholar
Yassen, G.H., Platt, J.A. & Hara, A.T. (2011). Bovine teeth as substitute for human teeth in dental research: A review of literature. J Oral Sci 53, 273282.Google Scholar
Zehnder, M. (2006). Root canal irrigants. J Endod 32, 389398.Google Scholar
Zero, D.T. (1995). In situ caries models. Adv Dent Res 9, 214230.Google Scholar