Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T22:04:22.994Z Has data issue: false hasContentIssue false

Characterization of Structural Changes of Casein Micelles at Different pH Using Microscopy and Spectroscopy Techniques

Published online by Cambridge University Press:  14 February 2022

Liliana Edith Rojas-Candelas
Affiliation:
Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq, Cda, Miguel Stampa s/n, C.P. 07738 Mexico City, Mexico
José Jorge Chanona-Pérez*
Affiliation:
Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq, Cda, Miguel Stampa s/n, C.P. 07738 Mexico City, Mexico
Juan Vicente Méndez Méndez
Affiliation:
Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq, Cda, Miguel Stampa s/n, C.P. 07738 Mexico City, Mexico Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Luis Enrique Erro s/n, Zacatenco, Gustavo A. Madero, C.P. 07738 Mexico City, Mexico
José Antonio Morales-Hernández
Affiliation:
Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A. C. Av Normalistas #800, Guadalajara, Jalisco, México
Héctor Alfredo Calderón Benavides
Affiliation:
Instituto Politécnico Nacional. Escuela Superior de Física y Matemáticas, Av. Instituto Politécnico Nacional Edificio 9, U. Profesional Adolfo Lopez Mateos, Gustavo A. Madero, C.P. 07738 Mexico City, Mexico
*
*Corresponding author: José Jorge Chanona-Pérez E-mail: [email protected]
Get access

Abstract

This study aimed to evaluate the influence of pH changes on morphometric parameters of casein micelles and a general overview of their conformational structure through microscopy techniques, Raman spectroscopy and multivariate analysis. It was found that casein micelles morphology and protein secondary structure depend strongly upon pH. The changes of arithmetic average roughness (Ra), size, and shape of casein micelles at different pH are properly characterized by atomic force and cryo-transmission electron microscopy. Morphometric changes of casein micelles were correlated correctly with folding and unfolding of casein molecules as evaluated by Raman spectroscopy when the pH was varied. The novelty of this contribution consists in demonstrating that there is a close structure-functionality relationship between the morphometric parameters of proteins and their secondary structure. Knowledge about casein micelles can help improve their use of its diverse applications.

Type
Biological Applications
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asuero, AG, Sayago, A & González, AG (2006). The correlation coefficient: An overview. Crit Rev Anal Chem 36, 4159.CrossRefGoogle Scholar
Bahri, A, Martin, M, Gergely, C, Marchesseau, S & Chevalier-Lucia, D (2018). Topographical and nanomechanical characterization of casein nanogel particles using atomic force microscopy. Food Hydrocoll 83, 5360. doi:10.1016/j.foodhyd.2018.03.029CrossRefGoogle Scholar
Bahri, A, Martin, M, Gergely, C, Pugnière, M, Chevalier-Lucia, D & Marchesseau, S (2017). Atomic force microscopy study of the topography and nanomechanics of casein micelles captured by an antibody. Langmuir 33, 47204728.CrossRefGoogle ScholarPubMed
Bhat, MY, Dar, TA & Singh, LR (2016). Casein proteins: structural and functional aspects. In Milk Proteins - From Structure to Biological Properties and Health Aspects, pp. 1–18.CrossRefGoogle Scholar
Biswas, KM, DeVido, DR & Dorsey, JG (2003). Evaluation of methods for measuring amino acid hydrophobicities and interactions. J Chromatogr, A 1000, 637655.CrossRefGoogle ScholarPubMed
Carbonaro, M & Nucara, A (2010). Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region. Amino Acids 38, 679690.CrossRefGoogle ScholarPubMed
Chakraborty, A & Basak, S (2007). pH-induced structural transitions of caseins. J Photochem Photobiol, B 87, 191199.CrossRefGoogle ScholarPubMed
Farrell, HM, Brown, EM & Kumosinski, TF (1993). Three-dimensional molecular modeling of bovine caseins: A refined, energy-minimized κ-casein structure. J Dairy Sci 76, 25072520.Google Scholar
Gómez, AV, Ferrer, EG, Añón, MC & Puppo, MC (2013). Changes in secondary structure of gluten proteins due to emulsifiers. J Mol Struct 1033, 5158.CrossRefGoogle Scholar
Herrero, AM, Cambero, MI, Ordóñez, JA, de la Hoz, L & Carmona, P (2008). Raman spectroscopy study of the structural effect of microbial transglutaminase on meat systems and its relationship with textural characteristics. Food Chem 109, 2532.CrossRefGoogle ScholarPubMed
Holt, C, Carver, JA, Ecroyd, H & Thorn, DC (2013). Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods. J Dairy Sci 96, 61276146. doi:10.3168/jds.2013-6831CrossRefGoogle ScholarPubMed
Horne, D (2017). A balanced view of casein interactions. Curr Opin Colloid Interface Sci 28, 7486. doi:10.1016/j.cocis.2017.03.009CrossRefGoogle Scholar
Horne, DS (2002). Casein structure, self-assembly and gelation. Curr Opin Colloid Interface Sci 7, 456461.CrossRefGoogle Scholar
Horne, DS (2006). Casein micelle structure: Models and muddles. Curr Opin Colloid Interface Sci 11, 148153.CrossRefGoogle Scholar
Hussain, R, Gaiani, C, Aberkane, L, Ghanbaja, J & Scher, J (2011). Multiscale characterization of casein micelles under NaCl range conditions. Food Biophys 6, 503511.CrossRefGoogle Scholar
Jahaniaval, F, Kakuda, Y, Abraham, V & Marcone, MF (2000). Soluble protein fractions from pH and heat treated sodium caseinate: Physicochemical and functional properties. Food Res Int 33, 637647.CrossRefGoogle Scholar
Knudsen, JC & Skibsted, LH (2010). High pressure effects on the structure of casein micelles in milk as studied by cryo-transmission electron microscopy. Food Chem 119, 202208. doi:10.1016/j.foodchem.2009.06.017CrossRefGoogle Scholar
Lahiri, J, Isaacs, L, Tien, J & Whitesides, GM (1999). A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: A surface plasmon resonance study. Anal Chem 71, 777790.CrossRefGoogle Scholar
Li, K, Kang, Z-L, Zhao, YY, Xu, XL & Zhou, G-H (2014). Use of high-intensity ultrasound to improve functional properties of batter suspensions prepared from PSE-like chicken breast meat. Food Bioprocess Technol 7, 34663477.CrossRefGoogle Scholar
Liu, Y, Zhao, G, Zhao, M, Ren, J & Yang, B (2012). Improvement of functional properties of peanut protein isolate by conjugation with dextran through maillard reaction. Food Chem 131, 901906. doi:10.1016/j.foodchem.2011.09.074CrossRefGoogle Scholar
Lucey, JA & Singh, H (1997). Formation and physical properties of acid milk gels: A review. Food Res Int 30, 529542.CrossRefGoogle Scholar
Mc Sweeney, PLH & O Mahony, JA (2016). Advanced Dairy Chemistry Volume 1B: Proteins: Applied Aspects, 4th ed. New York, Heidelberg, Dordrecht, London: Springer.Google Scholar
Michael Byler, D, Farrell, HM & Susi, H (1988). Raman spectroscopic study of casein structure. J Dairy Sci 71, 26222629.CrossRefGoogle Scholar
Mirdha, L & Chakraborty, H (2019). International journal of biological macromolecules characterization of structural conformers of κ-casein utilizing fluorescence spectroscopy. Int J Biol Macromol 131, 8996. doi:10.1016/j.ijbiomac.2019.03.040CrossRefGoogle ScholarPubMed
Moitzi, C, Menzel, A, Schurtenberger, P & Stradner, A (2011). The pH induced sol-gel transition in skim milk revisited. a detailed study using time-resolved light and X-ray scattering experiments. Langmuir 27, 21952203.CrossRefGoogle Scholar
Ouanezar, M, Guyomarc'h, F & Bouchoux, A (2012). AFM imaging of milk casein micelles: Evidence for structural rearrangement upon acidification. Langmuir 28, 49154919.CrossRefGoogle ScholarPubMed
Painter, PC & Koenig, JL (1976). Raman spectroscopic study of the proteins of egg white. Biopolymers 15, 21552166.CrossRefGoogle ScholarPubMed
Pan, K & Zhong, Q (2015). Amyloid-like fibrils formed from intrinsically disordered caseins: Physicochemical and nanomechanical properties. Soft Matter 11, 58985904. doi:10.1039/C5SM01037CCrossRefGoogle ScholarPubMed
Pelton, JT & McLean, LR (2000). Spectroscopic methods for analysis of protein secondary structure. Anal Biochem 277, 167176.CrossRefGoogle ScholarPubMed
Qi, PX (2007). Studies of casein micelle structure: The past and the present. Dairy Sci Technol 87, 363383.CrossRefGoogle Scholar
Riché, E, Carrié, A, Andin, N & Mabic, S (2006). A P P L I C A T I O N N O T E New Products Crystallization System. www.aln20.com/newproducts.Google Scholar
Rojas-Candelas, LE, Chanona-Pérez, JJ, Méndez Méndez, JV, Resendiz-Mora, CA, Calderón-Benavides, HA & Cervantes-Sodi, F (2019). Microstructural characterization of casein by microscopy and spectroscopy techniques. IEEE Access 25, 490491.Google Scholar
Smeller, L (2002). Pressure-temperature phase diagrams of biomolecules. Biochim Biophys Acta - Protein Struct Mol Enzymol 1595, 1129.CrossRefGoogle ScholarPubMed
Solowiej, B, Mleko, S & Gustaw, W (2008). Physicochemical properties of acid casein processed cheese analogs obtained with different whey products. Milchwissenschaft 63, 299302.Google Scholar
Swaisgood, HE (1993). Review and update of casein chemistry. J Dairy Sci 76, 30543061. doi:10.3168/jds.S0022-0302(93)77645-6CrossRefGoogle ScholarPubMed
Uricanu, VI, Duits, MHG & Mellema, J (2004). Hierarchical networks of casein proteins: An elasticity study based on atomic force microscopy. Langmuir 20, 50795090.CrossRefGoogle ScholarPubMed
Vié, V, Moreno, J, Beaufils, S, Lesniewska, E, Léonil, J & Renault, A (2002). Interfacial behavior of goat kappa casein: Ellipsometry and atomic force microscopy study. Single Molecules 3, 127133.3.0.CO;2-K>CrossRefGoogle Scholar
Wang, K, Sun, D-W, Pu, H & Wei, Q (2017). Principles and applications of spectroscopic techniques for evaluating food protein conformational changes: A review. Trends Food Sci Technol 67, 207219. doi:10.1016/j.tifs.2017.06.015CrossRefGoogle Scholar
Waninge, R, Kalda, E, Paulsson, M, Nylander, T & Bergenståhl, B (2004). Cryo-TEM of isolated milk fat globule membrane structures in cream. Phys Chem Chem Phys 6, 15181523.CrossRefGoogle Scholar
Xiao-zhou, S, Hong-ru, W & Mian, H (2014). Characterization of the casein/keratin self-assembly nanomicelles. J Nanomater 2014, 17.CrossRefGoogle Scholar
Yahimi Yazdi, S, Corredig, M & Dalgleish, DG (2014). Studying the structure of β-casein-depleted bovine casein micelles using electron microscopy and fluorescent polyphenols. Food Hydrocoll 42, 171177. doi:10.1016/j.foodhyd.2014.03.022CrossRefGoogle Scholar
Yang, M, Cui, N, Fang, Y, Shi, Y, Yang, J & Wang, J (2015). Influence of succinylation on the conformation of yak casein micelles. Food Chem 179, 246252.CrossRefGoogle ScholarPubMed