Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-01T00:18:24.343Z Has data issue: false hasContentIssue false

Characterization of Mesoporosity in Ceria Particles Using Electron Microscopy

Published online by Cambridge University Press:  19 November 2010

Shao-Ju Shih
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
Pilar Rodrigo Herrero
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK Dpto. de Ciencia e Ingeniería de Materiales Escuela Superior de Ciencias Experimetales y Tecnología Universidad Rey Juan Carlosc/ Tulipán s.n. 28933, Móstoles (Madrid), Spain
Guoqiang Li
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
Chin-Yi Chen
Affiliation:
Department of Materials Science and Engineering, Feng Chia University, No. 100 Wenhwa Road, Taichung, Taiwan, 40724, R.O.C.
Sergio Lozano-Perez*
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The geometry and three-dimensional (3D) morphology of the ceria particles synthesized by spray pyrolysis (SP) from two different precursors—cerium acetate hydrate and cerium nitrate hydrate (CeA and CeN ceria particles)—were characterized by transmission electron microscopy and electron tomography. Results were compared with surface area measurements, confirming that the surface area of CeA ceria particles is twice as large as that of CeN ceria particles. This result was supported by 3D microstructural observations, which have revealed that CeA ceria particles contain open pores (connected to surfaces) and closed pores (embedded in particles), while CeN ceria particles only contained closed pores. This experimental result suggests that the type of porosity is controlled by the precursors and could be related to their melting temperature during the heating process in SP.

Type
TEM and STEM Materials Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43 Sec. 4 Keelung Road, Taipei, Taiwan 106, R.O.C.

References

REFERENCES

Blumenthal, R.N., Brugner, F.S. & Garnier, J.E. (1973). Electrical conductivity of CaO-doped nonstoichiometric cerium dioxide from 700°C to 1500°C. J Electrochem Soc 120(9), 12301237.CrossRefGoogle Scholar
Bruce, L.A., Hoang, M., Hughes, A.E. & Turner, T.W. (1996). Surface area control during the synthesis and reduction of high area ceria catalyst supports. Appl Catal A-Gen 134(2), 351362.CrossRefGoogle Scholar
Brunauer, S., Emmett, P.H. & Teller, E. (1938). Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2), 309319.CrossRefGoogle Scholar
Chen, C.Y., Lyu, Y.R., Su, C.Y., Lin, H.M. & Lin, C.K. (2007). Characterization of spray pyrolyzed manganese oxide powders deposited by electrophoretic deposition technique Surf Coat Tech 202(4-7), 12771281.CrossRefGoogle Scholar
Chen, C.Y., Tseng, T.K., Tsai, S.C., Lin, C.K. & Lin, H.M. (2008a). Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis. Ceram Int 34(2), 409416.CrossRefGoogle Scholar
Chen, C.Y., Tseng, T.K., Tsay, C.Y. & Lin, C.K. (2008b). Formation of irregular nanocrystalline CeO2 particles from acetate-based precursor via spray pyrolysis. J Mater Eng Perform 17(1), 2024.CrossRefGoogle Scholar
Crowther, R.A., De Rosier, D.J. & Klug, A. (1970). Reconstruction of a three-dimensional structure from projection and its application to electron microscop. Proc R Soc Lond A 317, 319340.Google Scholar
Ersen, O., Begin, S., Houlle, M., Amadou, J., Janowska, I., Greneche, J.M., Crucifix, C. & Pham-Huu, C. (2008). Microstructural investigation of magnetic CoFe2O4 nanowires inside carbon nanotubes by electron tomography. Nano Lett 8(4), 10331040.CrossRefGoogle ScholarPubMed
Kang, H.S., Kang, Y.C., Koo, H.Y., Ju, S.H., Kim, D.Y., Hong, S.K., Sohn, J.R., Jung, K.Y. & Park, S.B. (2006). Nano-sized ceria particles prepared by spray pyrolysis using polymeric precursor solution. Mat Sci Eng B-Solid 127(2-3), 99104.CrossRefGoogle Scholar
Khalil, K.M.S., Elkabee, L.A. & Murphy, B. (2005). Preparation and characterization of thermally stable porous ceria aggregates formed via a sol-gel process of ultrasonically dispersed cerium(IV) isopropoxide. Micropor Mesopor Mat 78(1), 8389.CrossRefGoogle Scholar
Kilbourn, B.T. (1993). Part 1, A–L. In A Lanthanide Lantology, pp. 34. Mountain Pass: Molycorp Inc. Available at www.molycorp.com/data_sheets/lanthology_m-z.pdf.Google Scholar
Madler, L., Stark, W.J. & Pratsinis, S.E. (2002). Flame-made ceria nanoparticles. J Mater Res 17(6), 13561362.CrossRefGoogle Scholar
Masui, T., Fujiwara, K., Machida, K., Adachi, G., Sakata, T. & Mori, H. (1997). Characterization of cerium(IV) oxide ultrafine particles prepared using reversed micelles. Chem Mater 9(10), 21972204.CrossRefGoogle Scholar
Messing, G.L., Zhang, S.C. & Jayanthi, G.V. (1993). Ceramic powder synthesis by spray-pyrolysis. J Am Ceram Soc 76(11), 27072726.CrossRefGoogle Scholar
Midgley, P.A., Weyland, M., Yates, T.J.V., Arslan, I., Dunin-Borkowski, R.E. & Thomas, J.M. (2006). Nanoscale scanning transmission electron tomography. J Microsc-Oxf 223, 185190.CrossRefGoogle ScholarPubMed
Minh, N.Q. (1993). Ceramic fuel-cells. J Am Ceram Soc 76(3), 563588.CrossRefGoogle Scholar
Nishida, R., Kakinuma, K., Nishino, H., Kamino, T., Yamashita, H., Watanabe, M. & Uchida, H. (2009). Synthesis of nickel nanoparticles supported on hollow samaria-doped ceria particles via the solution-spray plasma technique: Anode catalysts for SOFCs. Solid State Ionics 180(14-16), 968972.CrossRefGoogle Scholar
Papastergiades, E., Argyropoulos, S., Rigakis, N. & Kiratzis, N.E. (2009). Fabrication of ceramic electrolytic films by the method of solution aerosol thermolysis (SAT) for solid oxide fuel cells (SOFC). Ionics 15(5), 545554.CrossRefGoogle Scholar
Phonthammachai, N., Rumruangwong, M., Gulari, E., Jamieson, A.M., Jitkarnka, S. & Wongkasemjit, S. (2004). Synthesis and rheological properties of mesoporous nanocrystalline CeO2 via sol-gel process. Coll Surf A 247(1-3), 6168.CrossRefGoogle Scholar
Radermacher, M. & Hopee, W. (1981). Properties of 3-D reconstruction from projections by conical tilting compared to single-axis tilting. Proceedings of the 7th European Congress of Electron Microscopy. Den Haag, 1981, Vol. 1, pp. 132–133.Google Scholar
Rossinyol, E., Pellicer, E., Prim, A., Estradé, S., Arbiol, J., Peiró, F., Cornet, A. & Morante, J.R. (2008). Gadolinium doped ceria nanocrystals synthesized from mesoporous silica. J Nanopart Res 10(2), 369375.CrossRefGoogle Scholar
Seidell, A. (1919). Solubilities of Inorganic and Organic Substances. New York: D. Van Nostrand Company.Google Scholar
Shen, W.H., Dong, X.P., Zhu, Y.F., Chen, H.R. & Shi, J.L. (2005). Mesoporous CeO2 and CuO-loaded niesoporous CeO2: Synthesis, characterization, and CO catalytic oxidation property. Micropor Mesopor Mat 85(1-2), 157162.CrossRefGoogle Scholar
Shih, S.J., Chang, L.Y.S., Chen, C.Y., Borisenko, K.B. & Cockayne, D.J.H. (2009a). Nanoscale yttrium distribution in yttrium-doped ceria powder. J Nanopart Res 11, 21452152.CrossRefGoogle Scholar
Shih, S.J., Huang, Y., Lyu, Y.R. & Chen, C.Y. (2009b). Cross-sectional observation of yttrium and nickel oxide doped ceria powder. J Nanosci Nanotechnol 9(6), 38983903.CrossRefGoogle ScholarPubMed
Shih, S.J., Li, G., Cockayne, D.J.H. & Borisenko, K.B. (2009c). Mechanism of dopant distribution: An example of nickel-doped ceria nanoparticles. Scripta Mater 61(8), 832835.CrossRefGoogle Scholar
Singhal, S.C. (2000). Advances in solid oxide fuel cell technology. Solid State Ionics 135(1-4), 305313.CrossRefGoogle Scholar
Sproson, D., Messing, G. & Gardner, T. (1986). Powder synthesis for electronic ceramics by evaporative decomposition of solutions. Ceram Int 12(1), 37.CrossRefGoogle Scholar
Teleki, A., Heine, M.C., Krumeich, F., Akhtar, M.K. & Pratsinis, S.E. (2008). In situ coating of flame-made TiO2 particles with nanothin SiO2 films. Langmuir 24(21), 1255312558.CrossRefGoogle ScholarPubMed
Terribile, D., Trovarelli, A., Llorca, J., De Leitenburg, C. & Dolcetti, G. (1998). The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route. J Catal 178(1), 299308.CrossRefGoogle Scholar
Tschope, A., Sommer, E. & Birringer, R. (2001). Grain size-dependent electrical conductivity of polycrystalline cerium oxide I. Experiments. Solid State Ionics 139(3-4), 255265.CrossRefGoogle Scholar
Virkar, A.V., Chen, J., Tanner, C.W. & Kim, J.-W. (2000). The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ionics 131(1-2), 189198.CrossRefGoogle Scholar
Zhu, W.Z. & Deevi, S.C. (2003). A review on the status of anode materials for solid oxide fuel cells. Mat Sci Eng A-Struct 362(1-2), 228239.CrossRefGoogle Scholar