Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T21:15:19.277Z Has data issue: false hasContentIssue false

Characterization of Al and Mg Alloys from Their X-Ray Emission Bands

Published online by Cambridge University Press:  15 January 2009

Philippe Jonnard*
Affiliation:
UPMC Univ Paris 06, CNRS-UMR 7614, Laboratoire de Chimie Physique - Matière et Rayonnement, 11 rue Pierre et Marie Curie, F-75231 Paris cedex 05, France
Karine Le Guen
Affiliation:
UPMC Univ Paris 06, CNRS-UMR 7614, Laboratoire de Chimie Physique - Matière et Rayonnement, 11 rue Pierre et Marie Curie, F-75231 Paris cedex 05, France
Raynald Gauvin
Affiliation:
Department of Materials Engineering, McGill University, 3610 University Street, Montréal, Québec H3A 2B2, Canada
Jean-François Le Berre
Affiliation:
Department of Materials Engineering, McGill University, 3610 University Street, Montréal, Québec H3A 2B2, Canada
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The valence states of Mg-Al alloys are compared to those of reference materials (pure Mg and Al metals, and intermetallics). Two methods based on X-ray emission spectroscopy are proposed to determine the phases and their proportion: first, by analyzing the Al valence spectra of the Mg-rich alloys and the Mg valence spectra of the Al-rich alloys; second, by fitting with a linear combination of the reference spectra the Al spectra of the Al-rich alloys and the Mg spectra of the Mg-rich alloys. This enables us to determine that Al and Al3Mg2 are present in the 0–43.9 wt% Al composition range and Mg and Al12Mg17 are present in the 62.5–100 wt% Al composition range. In the 43.9–62.5% Al range, the alloy is single phase and an underestimation of the Al content of the alloy can be estimated from the comparison of the bandwidth of the alloy spectrum to the bandwidths of the reference spectra.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Appleton, A. & Curry, C. (1965). Soft X-ray spectra of non-dilute aluminium-magnesium alloys. Phil Mag 12, 245252.CrossRefGoogle Scholar
Azaroff, L.V. (1974). X-Ray Spectroscopy. New York: McGraw-Hill Inc.Google Scholar
Belin-Ferré, E., Fournée, V., Mizutani, U., Takeuchi, T. & Müller, H. (2000). Investigation of Al and Mg occupied densities of states of Al-Mg-Zn aloys. Mat Sci Eng A (Structural Materials: Properties, Microstructure and Processing) 294-296, 516518.CrossRefGoogle Scholar
Bonnelle, C. (1987). X-Ray Spectroscopy. Annual report C, The Royal Society of Chemistry, 201272.Google Scholar
Bonnelle, C., Vergand, F., Jonnard, P., Andrè, J.-M., Avila, P., Chargelégue, P., Fontaine, M.-F., Laporte, D., Paquier, P., Ringuenet, A. & Rodriguez, B. (1994). Instrument for research on interfaces and surfaces (IRIS). Rev Sci Instrum 65, 34663471.CrossRefGoogle Scholar
Das Gupta, K. & Wood, E. (1955). Soft X-ray spectra of magnesium-aluminium, magnesium-silicon and aluminium-silicon alloys. Phil Mag 46, 7786.CrossRefGoogle Scholar
Day, D.E. (1963). Determining the co-ordination number of aluminium ions by X-ray emission spectroscopy. Nature 4907, 649650.CrossRefGoogle Scholar
Fournée, V., Belin-Ferré, E., Sadoc, A., Donnadieu, P., Flank, A.-M. & Müller, H. (1999). Atomic and electronic structure of quasiperiodic and crystalline Mg-61 at.% Al alloys. J Phys Cond Mat 11, 191208.CrossRefGoogle Scholar
Galakhov, V.R. (2002). Application of soft X-ray emission spectroscopy for the study of solid-phase reactions in Si-based interfaces. X-Ray Spectrom 31, 203208.CrossRefGoogle Scholar
Gale, B. & Trotter, J. (1956). Soft X-ray spectroscopy of solid solutions of aluminium and magnesium. Phil Mag 1, 759770.CrossRefGoogle Scholar
Gauvin, R., Lifshin, E., Demers, H., Horny, P. & Campbell, H. (2006a). Win X-ray: A new Monte Carlo program that computes X-ray spectra obtained with a scanning electron microscope. Microsc Microanal 12, 4964.CrossRefGoogle ScholarPubMed
Gauvin, R., Robertson, K., Horny, P., Elwazri, A.M. & Yue, S. (2006b). Materials characterization using high-resolution scanning-electron microscopy and X-ray microanalysis. JOM 58, 2026.CrossRefGoogle Scholar
Iwami, M., Kusaka, M., Hirai, M., Tagami, R., Nakamura, H. & Watabe, H. (1997). Soft X-ray emission spectroscopy study of CaF/sub 2/(film)/Si(111): Non-destructive buried interface analysis. Appl Surf Sci 117-118, 434437.CrossRefGoogle Scholar
Jarrige, I., Jonnard, P., Frantz-Rodriguez, N., Danaie, K. & Bosseboeuf, A. (2002). Study of an NiTi/SiO2 interface: Analysis of the electronic distributions. Surf Interface Anal 34, 694697.CrossRefGoogle Scholar
Jonnard, P., Capron, N., Semond, F., Massies, J., Martinez-Guerrero, E. & Mariette, H. (2004). Electronic structure of wurtzite and zinc-blende AlN. Euro Phys J B 42, 351359.CrossRefGoogle Scholar
Jonnard, P., Jarrige, I., Benbalagh, R., Maury, H., Andre, J.M., Dankhazi, Z. & Rolland, G. (2005). Physico-chemical and X-ray optical characterizations of a Mo/Si multilayer interferential mirror upon annealing. Surf Sci 589, 164172.CrossRefGoogle Scholar
Jonnard, P., Morreeuw, J.-P. & Bercegol, H. (2003). Physico-chemical environment of Al impurity atoms in amorphous silica. Euro Phys J Appl Phys 21, 147149.CrossRefGoogle Scholar
Jonnard, P., Vergand, F., Bonnelle, C., Orgaz, E. & Gupta, M. (1998). Electron distribution in MgO probed by X-ray emission. Phys Rev B (Cond Mat) 57, 1211112118.CrossRefGoogle Scholar
Kashiwakura, T. & Nakai, S. (2004). Study of thermal oxidation of LaSix/Si(100) by grazing incidence electron-induced X-ray emission spectroscopy. J Electr Spectr Rel Phen 135, 4752.CrossRefGoogle Scholar
Kurmaev, E.Z., Shamin, S.N., Galakhov, V.R., Wiech, G., Majkova, E. & Luby, S. (1995). Characterization of W/Si multilayers by ultrasoft X-ray emission spectroscopy. J Mater Res 10, 907911.CrossRefGoogle Scholar
Maury, H., Andre, J.M., Gautier, J., Bridou, F., Delmotte, F., Ravet, M.F., Holliger, P. & Jonnard, P. (2006a). Physico-chemical study of the interfaces of Mo/Si multilayer interferential mirrors: Correlation with the optical properties. Surf Interf Anal 38, 744747.CrossRefGoogle Scholar
Maury, H., Jonnard, P., Andre, J.M., Gautier, J., Roulliay, M., Bridou, F., Delmotte, F., Ravet, M.F., Jerome, A. & Holliger, P. (2006b). Non-destructive X-ray study of the interphases in Mo/Si and Mo/B4C/Si/B4C multilayers. Thin Solid Films 514(1–2), 278286.CrossRefGoogle Scholar
Neddermeyer, H. (1972). Soft X-ray emission band spectra and electronic structure of non-dilute Al-Mg alloys. Phys Lett 38A, 329330.CrossRefGoogle Scholar
Neddermeyer, H. (1973). X-ray emission band spectra and electronic structure of alloys of light elements. In Band Structure Spectroscopy of Metals and Alloys, Fabian, D.J. & Watson, L.M. (Eds.), pp. 153172. London, New York: Academic Press.Google Scholar
Nemoshkalenko, V.V. (1972). X-Ray Emission Spectroscopy of Metals and Alloys. Kiev: Nankova Dumka (in Russian).Google Scholar
Salou, M., Rioual, S., Ben Youssef, J., Dekadjevi, D., Pogossian, S., Jonnard, P., Le Guen, K., Gamblin, G., Lépine, B. & Rouvellou, B. (2008). Interdiffusion effects in as-deposited Al/Ni polycrystalline multilayers. Surf Interf Anal 40, 13181321.CrossRefGoogle Scholar
Szasz, A., Watson, L.M., Kertesz, L. & Kollar, J. (1988). On the electronic density of states of age-hardening aluminium alloys. J Phys F (Metal Phys) 18, 18491853.CrossRefGoogle Scholar
Tanaka, K. & Matsumoto, M. (1974). Concentration dependence of Al-Kβ bandwidths in Al-Mg alloys. Jap J Appl Phys 13, 19111912.CrossRefGoogle Scholar
Vergand, F., Jonnard, P. & Bonnelle, C. (1989). Radiative decay of AlAs core hole in monocrystalline AlAs. Europhys Lett 10, 6772.CrossRefGoogle Scholar