No CrossRef data available.
Article contents
CBED Investigations of Mesoscopic Semiconductor Structures
Published online by Cambridge University Press: 02 July 2020
Extract
Ternary and quaternary heterostructures from III-V-semiconductors get more and more importance in the fabrication of high-speed/high frequency devices in telecommunication systems. One of the key parameters for the performance of such devices is the crystalline quality and especially the amount of tetragonal distortion in strained layers on a nanometer scale. Strain can cause problems for the growth of such layers like relaxation induced defects, especially for the case of a high value of lattice mismatch. However, strain and the associated influence on the band structure can be used consciously for the design of tailor-made heterostructures (band gap engineering). Therefore, the spatially resolved investigation of local crystal properties (tetragonal distortion or strain and strain relaxation) is a key tool for the characterization of strained layers.
Convergent beam electron diffraction (CBED) patterns and convergent beam imaging (CBIM) can be used to evaluate informations on the local crystalline structure. E.g. the position of the High Order Laue Zone (HOLZ) lines in the CBED patterns is sensitive to the local strain and therefore can be used to determine strain and relaxation effects in heterostructures quantitatively. But in practice the applicability of CBED is often limited by a lack of ultimate spatial resolution and/or of sensitivity.
- Type
- Electron Diffraction in the TEM
- Information
- Copyright
- Copyright © Microscopy Society of America