Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T14:09:31.947Z Has data issue: false hasContentIssue false

Carbon Nanotube Electrostatic Biprism: Principle of Operation and Proof of Concept

Published online by Cambridge University Press:  01 August 2004

John Cumings
Affiliation:
Department of Physics, University of California at Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
A. Zettl
Affiliation:
Department of Physics, University of California at Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
M.R. McCartney
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1504, USA
Get access

Abstract

During in situ transmission electron microscopy (TEM) field emission experiments, carbon nanotubes are observed to strongly diffract the imaging TEM electron beam. We demonstrate that this effect is identical to that of a standard electrostatic biprism. We also demonstrate that the nanotube biprism can be used to capture electron-holographic information.

Type
Instrumentation and Techniques
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aharonov, Y. & Bohm, D. (1959). Significance of electromagnetic potentials in the quantum theory. Phys Rev 115, 485491.Google Scholar
Chen, J.W., Matteucci, G., Migliori, A., Missiroli, G.F., Nichelatti, E., Pozzi, G., & Vanzi, M. (1989). Mapping of microelectrostatic fields by means of electron holography—Theoretical and experimental results. Phys Rev A 40, 31363146.Google Scholar
Cui, Y., Lauho, J., Gudiksen, M.S., Wang, J.N., & Lieber, C.M. (2001). Diameter-controlled synthesis of single-crystal silicon nanowires. Appl Phys Lett 78, 22142216.Google Scholar
Cumings, J., Zettl, A., & McCartney, M.R. (2002). Electron holography of field-emitting carbon nanotubes. Phys Rev Lett 88, 056804.Google Scholar
Endo, M., Takeuchi, K., Igarashi, S., Kobori, K., Shiraishi, M., & Kroto, H.W. (1993). The production and structure of pyrolytic carbon nanotubes (PCNTs). J Phys Chem Solids 54, 18411848.Google Scholar
Fultz, B. & Howe, J.M. (2001). Transmission Electron Microscopy and Diffractometry of Materials. Berlin: Springer.
Lin, X. & Dravid, V.P. (1996). Mapping the potential of graphite nanotubes with electron holography. Appl Phys Lett 69, 10141016.Google Scholar
Matsuda, T., Hasegawa, S., Igarashi, M., Kobayashi, T., Naito, M., Kajiyama, H., Endo, J., Osakabe, N., Tonomura, A., & Aoki, R. (1989). Magnetic-field observation of a single flux quantum by electron-holographic interferometry. Phys Rev Lett 62, 25192522.Google Scholar
Möllenstedt, G. & Düker, H. (1956). Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen. Zeitschrift für Physik 145, 377397.Google Scholar
Möllenstedt, G. & Keller, M. (1957). Elektroneninterferometrische Messung des inneren Potentials. Zeitschrift für Physik 148, 3437.Google Scholar
Ravikumar, V., Rodrigues, R.P., & Dravid, V.P. (1995). Direct imaging of spatially varying potential and charge across internal interfaces in solids. Phys Rev Lett 75, 40634066.Google Scholar
Stach, E.A., Freeman, T., Minor, A.M., Owen, D.K., Cumings, J., Wall, M.A., Chraska, T., Hull, R., Morris, J.W., Zettl, A., & Dahmen, U. (2001). Development of a nanoindenter for in situ transmission electron microscopy. Microsc Microanal 7, 507517.Google Scholar
Tonomura, A. (1999). Electron Holography. Berlin: Springer.
Treacy, M.M.J., Ebbesen, T.W., & Gibson, J.M. (1996). Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381, 678680.Google Scholar
Völkl, E., Allard, L.F., & Joy, D.C. (1999). Introduction to Electron Holography. New York: Kluwer Academic/Plenum Publishers.
Wang, Z.L., Gao, R.P., de Heer, W.A., & Poncharal, P. (2002). In situ imaging of field emission from individual carbon nanotubes and their structural damage. Appl Phys Lett 80, 856858.Google Scholar