No CrossRef data available.
Article contents
Atomic Scale Characterization of Oxygen-Deficient Ceramic Membranes by EELS and Z-Contrast Imaging
Published online by Cambridge University Press: 02 July 2020
Extract
The Perovskite structured ceramic (Lax,Sr1-x)(Fey,Cr1-y)O3-δ being developed for applications in oxygen transporting membranes. The permeability of this material is limited by the number of free ions, point-defects (oxygen vacancies) and electrons in the bulk. As any ordering of these unbound particles will restrict their mobility one key issue for controlling the membrane efficiency is the formation of ordered oxygen vacancies. In particular it is very likely, that at elevated temperatures ordered micro-domains progressively grow and asymptotically reach a stable equilibrium concentration. This is consistent with the observations of Kruidhof that below a specific order-disorder transition temperature equilibrium times of 30-40 h are required to attain steady-state conditions, irrespective of the thermal history of the sample.
We investigate the formation of ordered vacancies in (Lax,Sr1-x)(Fey,Cr1-y)O3-δ by atomic resolution Z-contrast imaging and electron energy-loss spectroscopy (EELS) using a 200 keV STEM/TEM JEOL2010L with a post column Gatan Image Filter (GIF).
- Type
- The Theory and Practice of Scanning Transmission Electron Microscopy
- Information
- Microscopy and Microanalysis , Volume 6 , Issue S2: Proceedings: Microscopy & Microanalysis 2000, Microscopy Society of America 58th Annual Meeting, Microbeam Analysis Society 34th Annual Meeting, Microscopical Society of Canada/Societe de Microscopie de Canada 27th Annual Meeting, Philadelphia, Pennsylvania August 13-17, 2000 , August 2000 , pp. 118 - 119
- Copyright
- Copyright © Microscopy Society of America