Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T21:04:13.364Z Has data issue: false hasContentIssue false

Atomic Force Microscopy Measurements of Peptide-Wrapped Single-Walled Carbon Nanotube Diameters

Published online by Cambridge University Press:  16 May 2006

Vasiliki Z. Poenitzsch
Affiliation:
Department of Chemistry, University of Texas at Dallas, 2601 North Floyd Road, Richardson, Texas 75080, USA
Inga H. Musselman
Affiliation:
Department of Chemistry, University of Texas at Dallas, 2601 North Floyd Road, Richardson, Texas 75080, USA
Get access

Abstract

With a vertical resolution of 0.1 nm, atomic force microscopy (AFM) height measurements can be used to determine accurately the diameter of single-walled carbon nanotubes (SWNT) with the assumption that they have circular cross sections. The aim of this article is to draw attention to the need to optimize operating parameters in tapping mode for quantitative AFM height (diameter) analysis of SWNTs. Using silicon tip/cantilever assemblies with force constants ranging from 0.9 to 40 N m−1, we examined the effect of applied force on the apparent diameter of SWNT wrapped with a 29-residue amphiphilic α-helical peptide. A decrease in apparent height (SWNT diameter) with increasing applied force was observed for the higher force constant cantilevers. Cantilevers having force constants of 0.9 and 3 N m−1 demonstrated minimal vertical sample compression with increasing applied force. The effects of AFM image pixel density and scan speed on the measured height (diameter) of SWNTs were also assessed.

Type
MATERIALS APPLICATIONS
Copyright
© 2006 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Behrend, O.P., Odoni, L., Loubet, J.L., & Burnham, N.A. (1999). Phase imaging: Deep or superficial? Appl Phys Lett 75, 25512553.Google Scholar
Behrend, O.P., Oulevey, F., Gourdon, D., Dupas, E., Kulik, A.J., Gremaud, G., & Burnham, N.A. (1998). Intermittent contact: Tapping or hammering? Appl Phys A 66, S219S221.Google Scholar
Bozovic, D., Bockrath, M., Hafner, J.H., Lieber, C.M., Park, H., & Tinkham, M. (2003). Plastic deformations in mechanically strained single-walled carbon nanotubes. Phys Rev B 67, 03340710334074.Google Scholar
Burnham, N.A., Behrend, O.P., Oulevey, F., Gremaud, G., Gallo, P.-J., Gourdon, D., Dupas, E., Kulik, A.J., Pollock, H.M., & Briggs, G.A.D. (1997). How does a tip tap? Nanotechnology 8, 6775.Google Scholar
Chen, X., Davies, M.C., Roberts, C.J., Tendler, S.J.B., Williams, P.M., & Burnham, N.A. (2000). Optimizing phase imaging via dynamic force curves. Surf Sci 460, 292300.Google Scholar
Dieckmann, G.R., Dalton, A.B., Johnson, P.A., Razal, J., Chen, J., Giordano, G.M., Muñoz, E., Musselman, I.H., Baughman, R.H., & Draper, R.K. (2003). Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J Am Chem Soc 125, 17701777.Google Scholar
Fain, S.C., Jr., Barry, K.A., Bush, M.G., Pittenger, B., & Louie, R.N. (2000). Measuring average tip–sample forces in intermittent-contact (tapping) force microscopy in air. Appl Phys Lett 76, 930932.Google Scholar
Falvo, M.R., Clary, G.J., Taylor, R.M., II, Chi, V., Brooks, F.P., Jr., Washburn, S., & Superfine, R. (1997). Bending and buckling of carbon nanotubes under large strain. Nature 389, 582584.Google Scholar
Hertel, T., Martel, R., & Avouris, P. (1998). Manipulation of individual carbon nanotubes and their interaction with surfaces. J Phys Chem B 102, 910915.Google Scholar
Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T., & Yodh, A.G. (2002). High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3, 269273.Google Scholar
Nagahara, L.A., Hashimoto, K., & Fujishima, A. (1994). Mica etch pits as height calibration source for atomic force microscopy. J Vac Sci Technol B 12, 16941697.Google Scholar
Nikolaev, P., Bronikowski, M., Bradley, R., Rohmund, F., Colbert, D., Smith, K., & Smalley, R.E. (1999). Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313, 9197.Google Scholar
Odom, T.W., Hafner, J.H., & Lieber, C.M. (2001). Scanning probe microscopy studies of carbon nanotubes. In Carbon Nanotubes, Topics in Applied Physics, Dresselhaus, M.S., Dresselhaus, G. & Avouris, P. (Eds.), pp. 173211. Berlin: Springer-Verlag.
Postma, H.W.C., Sellmeijer, A., & Dekker, C. (2000). Manipulation and imaging of individual single-walled carbon nanotubes with an atomic force microscope. Adv Mater 12, 12991302.Google Scholar
Singjai, P., Songmee, N., Tunkasiri, T., & Vilaithong, T. (2002). Atomic force microscopy imaging and cutting of beaded carbon nanotubes deposited on glass. Surf Interface Anal 33, 900904.Google Scholar
Spatz, J.P., Sheiko, S., Möller, M., Winkler, R.G., Reineker, P., & Marti, O. (1995). Forces affecting the substrate in resonant tapping force microscopy. Nanotechnology 6, 4044.Google Scholar
Sulchek, T., Yaralioglu, G.G., Quate, C.F., & Minne, S.C. (2002). Characterization and optimization of scan speed for tapping-mode atomic force microscopy. Rev Sci Instrum 73, 29282936.Google Scholar
Tamayo, J. & García, R. (1996). Deformation, contact time, and phase contrast in tapping mode scanning force microscopy. Langmuir 12, 44304435.Google Scholar
Wong, E.R., Sheehan, P.E., & Lieber, C.M. (1997). Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 19711975.Google Scholar
Yu, M.-F., Kowalewski, T., & Ruoff, R.S. (2000). Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force. Phys Rev Lett 85, 14561459.Google Scholar
Zheng, M., Jagota, A., Semke, E.D., Diner, B.A., McLean, R.S., Lustig, S.R., Richardson, R.E., & Tassi, N.G. (2003). DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater 2, 338342.Google Scholar
Ziegler, K.J., Schmidt, D.J., Rauwald, U., Shah, K.N., Flor, E.L., Hauge, R.H., & Smalley, R.E. (2005). Length-dependent extraction of single-walled carbon nanotubes. Nano Lett 5, 23552359.Google Scholar
Zorbas, V., Ortiz-Acevedo, A., Dalton, A.B., Yoshida, M.M., Dieckmann, G.R., Draper, R.K., Baughman, R.H., Jose-Yacaman, M., & Musselman, I.H. (2004). Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. J Am Chem Soc 126, 72227227.Google Scholar