Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T05:53:44.018Z Has data issue: false hasContentIssue false

Atomic Force Microscopy and Related Techniques: Introduction, Instrumentation and Application to Polymeric Materials

Published online by Cambridge University Press:  02 July 2020

Inga Holl Musselman*
Affiliation:
Department of Chemistry, University of Texas at Dallas, Richardson, TX75083-0688
Get access

Extract

Atomic force microscopy (AFM) was introduced in 1986 by Binnig, Quate and Gerber. In this method, a sample is scanned beneath a small, sharp silicon or silicon nitride probe attached to the apex of a flexible cantilever. Cantilever deflection is measured to give height information corresponding to the sample topography. Since AFM relies on tip-sample force interaction, the technique can be applied to insulators as well as to conducting and semiconducting materials. AFM therefore extends local probe studies to an important class of materials which can be difficult to investigate by electron microscopy and spectroscopy techniques owing to problems with sample charging. Among other materials, AFM has been used extensively to characterize the morphology, roughness, nanostructure, chain packing and conformation of polymer surfaces at the nanometer scale.

Early AFM studies of polymers were conducted in the contact mode and included the investigation of polymerized monolayers of n-(2-aminoethyl)-10,12-tricosadiynamide (AE-TDA) and poly(octadecylacrylate) (PODA) at submonolayer coverage.

Type
Developments in Measuring Polymer Microstructures
Copyright
Copyright © Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Binnig, G., Quate, C. F., Gerber, Ch., Phys. Rev. Lett. 12 (1986) 930.CrossRefGoogle Scholar
2.Marti, O. et al., Science 239 (1988) 50.CrossRefGoogle Scholar
3.Albrecht, T. R. et al., J. Appl. Phys. 64 (1988) 1178.CrossRefGoogle Scholar
4.Magonov, S.N., Heaton, M. G., American Laboratory, April 1996, p. 59.Google Scholar
5.Goudy, A. et al., Langmuir 11 (1995) 4454.CrossRefGoogle Scholar
6.Drake, B. et al., Science 243 (1989) 1586.CrossRefGoogle Scholar
7.Shakesheff, K. M., Langmuir 10 (1994) 4417.CrossRefGoogle Scholar
8.Pearce, R., Vancso, G. J., Macromolecules 30 (1997) 5843.CrossRefGoogle Scholar
9.Leung, O. M. and Goh, M. C., Science 255 (1992) 64.CrossRefGoogle Scholar
10.Musselman, I. H. et al., J. Vac. Sci. Technol. A 12 (1994) 2523.CrossRefGoogle Scholar
11.Weisenhorn, A. L. et al., Appl. Phys. Lett. 54 (1989) 2651.CrossRefGoogle Scholar
12.Zhong, Q. et al., Surf. Sci. Lett. 290 (1993) L688.Google Scholar
13.Sheiko, S. S. et al., Langmuir 13 (1997) 5368.CrossRefGoogle Scholar
14.Kumaki, J. et al., J. Am. Chem. Soc. 118 (1996) 3321.CrossRefGoogle Scholar
15.Musselman, I. H. et al., Proc. Microscopy and Microanalysis, 1996, p. 862.Google Scholar
16.Maivald, P. et al., Nanotechnology 2 (1991) 103.CrossRefGoogle Scholar
17.Galuska, A. A. et al., Surf. Interface Anal. 25 (1997) 418.3.0.CO;2-P>CrossRefGoogle Scholar
18.Kajiyama, T. et al., Macromolecules 27 (1994) 7932.CrossRefGoogle Scholar
19.Reifer, D. et al., Thin Solid Films 264 (1995) 148.CrossRefGoogle Scholar
20.Magonov, S. H. et al., Surf. Sci. Let. 375 (1997) L385.CrossRefGoogle Scholar
21.Magonov, S. N. et al., Surf. Sci. 389 (1997) 201.CrossRefGoogle Scholar
22.McLean, R. S., Sauer, B. B., Macromolecules 30 (1997) 8314.CrossRefGoogle Scholar