Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T19:37:53.926Z Has data issue: false hasContentIssue false

Atom Probe Tomographic Studies of Precipitation in Al-0.1Zr-0.1Ti (at.%) Alloys

Published online by Cambridge University Press:  14 November 2007

Keith E. Knipling
Affiliation:
Naval Research Laboratory, Washington, DC 20375-5320, USA Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108, USA
David C. Dunand
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108, USA
David N. Seidman
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108, USA Northwestern University Center for Atom-Probe Tomography (NUCAPT), Northwestern University, Evanston, IL 60208-3108, USA
Get access

Abstract

Atom probe tomography was utilized to measure directly the chemical compositions of Al3(Zr1−xTix) precipitates with a metastable L12 structure formed in Al-0.1Zr-0.1Ti (at.%) alloys upon aging at 375°C or 425°C. The alloys exhibit an inhomogeneous distribution of Al3(Zr1−xTix) precipitates, as a result of a nonuniform dendritic distribution of solute atoms after casting. At these aging temperatures, the Zr:Ti atomic ratio in the precipitates is about 10 and 5, respectively, indicating that Ti remains mainly in solid solution rather than partitioning to the Al3(Zr1−xTix) precipitates. This is interpreted as being due to the very small diffusivity of Ti in α-Al, consistent with prior studies on Al-Sc-Ti and Al-Sc-Zr alloys, where the slower diffusing Zr and Ti atoms make up a small fraction of the Al3(Sc1−xTix/Zrx) precipitates. Unlike those alloys, however, the present Al-Zr-Ti alloys exhibit no interfacial segregation of Ti at the matrix/precipitate heterophase interface, a result that may be affected by a significant disparity in the evaporation fields of the α-Al matrix and Al3(Zr1−xTix) precipitates and/or a lack of local thermodynamic equilibrium at the interface.

Type
Research Article
Copyright
© 2007 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bergner, D. & van Chi, N. (1977). Untersuchungen zur diffusion von 3d-metallen in Al. Wissenschaftliche Zeitschrift der Padagogischen Hochschule 15, 15.Google Scholar
Blavette, D., Deconihout, A., Bostel, A., Sarrau, J.M., Bouet, M. & Menand, A. (1993). The tomographic atom probe: A quantitative three-dimensional nanoanalytical instrument on an atomic scale. Rev Sci Instrum 64, 29112919.CrossRefGoogle Scholar
Blavette, D., Vurpillot, F., Pareige, P. & Menand, A. (2001). A model accounting for spatial overlaps in 3D atom-probe microscopy. Ultramicroscopy 89, 145153.CrossRefGoogle Scholar
Brandon, D.G. (1964). The structure of field-evaporated surfaces. Surf Sci 3, 118.Google Scholar
Cerezo, A., Godfrey, T.J., Sijbrandij, S.J., Smith, G.D.W. & Warren, P.J. (1998). Performance of an energy-compensated three-dimensional atom probe. Rev Sci Instrum 69, 4958.CrossRefGoogle Scholar
Cerezo, A., Godfrey, T.J. & Smith, G.D.W. (1988). Application of a position-sensitive detector to atom probe microanalysis. Rev Sci Instrum 59, 862866.CrossRefGoogle Scholar
Cerezo, A., Grovenor, C.R.M., Hetherington, M.G., Sha, W., Shollock, B.A. & Smith, G.D.W. (1990). Analysis of nanometer-sized precipitates using atom probe techniques. Mater Char 25, 143156.CrossRefGoogle Scholar
Chen, Y.C., Fine, M.E. & Weertman, J.R. (1990). Microstructural evolution and mechanical properties of rapidly solidified Al-Zr-V alloys at high temperatures. Acta Metall Mater 38, 771780.CrossRefGoogle Scholar
Chen, Y.C., Fine, M.E., Weertman, J.R. & Lewis, R.E. (1987). Coarsening behavior of L12 structured Al3(ZrxV1−x) precipitates in rapidly solidified Al-Zr-V alloy. Scripta Metall 21, 10031008.CrossRefGoogle Scholar
Chu, M.G. (1994). Microstructure and solidification analysis of melt-spun Al-Ti and Al-Ti-B alloys. Mater Sci Eng A 179, 669675.CrossRefGoogle Scholar
Chuang, M.S. & Tu, G.C. (1994). The effect of Ti-addition on the L12 precipitates of rapidly-solidified Al-Cr-Zr alloy. Scripta Metall Mater 31, 12591264.CrossRefGoogle Scholar
Chung, S.C., Han, S.Z., Lee, H.M. & Kwon, H.S. (1995). Coarsening phenomenon of L12 precipitates in rapidly solidified Al-3at.%(Ti,V,Zr) system. Scripta Metall Mater 33, 687693.CrossRefGoogle Scholar
Cisse, J., Kerr, H.W. & Bolling, G.F. (1974). Nucleation and solidification of Al-Ti alloys. Metall Trans 5, 633641.CrossRefGoogle Scholar
Clouet, E., Laé, L., Épicier, T., Lefebvre, W., Nastar, M. & Deschamps, A. (2006). Complex precipitation pathways in multicomponent alloys. Nat Mater 5, 482488.CrossRefGoogle Scholar
Clouet, E., Nastar, M., Barbu, A., Sigli, C. & Martin, G. (2005). Precipitation in Al-Zr-Sc alloys: A comparison between kinetic Monte Carlo, cluster dynamics and classical nucleation theory. In Solid-to-Solid Phase Transformations in Inorganic Materials, Howe, J.M., Laughlin, D.E., Lee, J.K., Dahmen, U. & Soffa, W.A. (Eds.), pp. 683703. Warrendale, PA: TMS.
Eshelby, J.D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241, 376396.CrossRefGoogle Scholar
Eshelby, J.D. (1961). Elastic inclusions and inhomogeneities. In Progress in Solid Mechanics, Sneddon, I.N. & Hill, R. (Eds.), pp. 89140. New York: Interscience.
Forbord, B., Lefebvre, W., Danoix, F., Hallem, H. & Marthinsen, K. (2004). Three dimensional atom probe investigation on the formation of Al3(Sc,Zr)-dispersoids in aluminium alloys. Scripta Mater 51, 333337.CrossRefGoogle Scholar
Fuller, C.B. (2003). Temporal evolution of the microstructures of Al(Sc,Zr) alloys and their influences on mechanical properties. Ph.D. thesis. Evanston, IL: Northwestern University.
Fuller, C.B., Murray, J.L. & Seidman, D.N. (2005). Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I—Chemical compositions of Al3(Sc1−xZrx) precipitates. Acta Mater 53, 54015413.CrossRefGoogle Scholar
Han, S.Z., Chung, S.C. & Lee, H.M. (1995). Alloy design and coarsening phenomenon of L12 precipitates in high-temperature Al-2at.%(Ti,V,Zr) systems. Metall Mater Trans A 20, 16331639.CrossRefGoogle Scholar
Harada, Y. & Dunand, D.C. (2002). Microstructure of Al3Sc with ternary transition-metal additions. Mater Sci Eng A 329–331, 686695.CrossRefGoogle Scholar
Harada, Y. & Dunand, D.C. (2003). Thermal expansion of Al3Sc and Al3(Sc0.75X0.25). Scripta Mater 48, 219222.CrossRefGoogle Scholar
Hellman, O.C. & Seidman, D.N. (2002). Measurement of the Gibbsian interfacial excess of solute at an interface of arbitrary geometry using three-dimensional atom probe microscopy. Mater Sci Eng A 327, 2428.CrossRefGoogle Scholar
Hellman, O.C., Vandenbroucke, J., du Rivage, J.B. & Seidman, D.N. (2002). Application software for data analysis for three-dimensional atom probe microscopy. Mater Sci Eng A 327, 2933.CrossRefGoogle Scholar
Hellman, O.C., Vandenbroucke, J.A., Rusing, J., Isheim, D. & Seidman, D.N. (2000). Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc Microanal 6, 437444.Google Scholar
Hono, K. (1999). Atom probe microanalysis and nanoscale microstructures in metallic materials. Acta Mater 47, 31273145.CrossRefGoogle Scholar
Ichikawa, R. & Ohashi, T. (1968). Age hardening of chilled castings of Al-0.2-2wt.%Zr alloys. J Japan Inst Light Metals 18, 314319.CrossRefGoogle Scholar
Karnesky, R.A., van Dalen, M.E., Dunand, D.C. & Seidman, D.N. (2006). Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al-0.08 at.%Sc alloy. Scripta Mater 55, 437440.Google Scholar
Kelly, T.F., Camus, P.P., Larson, D.J., Holzman, L.M. & Bajikar, S.S. (1996). On the many advantages of local-electrode atom probes. Ultramicroscopy 62, 2942.CrossRefGoogle Scholar
Kelly, T.F, Gribb, T.T., Olson, J.D., Martens, R.L., Shepard, J.D., Wiener, S.A., Kunicki, T.C., Ulfig, R.M., Lenz, D.R., Strennen, E.M., Oltman, E., Bunton, J.H. & Strait, D.R. (2004). First data from a commercial local electrode atom probe (LEAP). Microsc Microanal 10, 373383.CrossRefGoogle Scholar
Kelly, T.F. & Larson, D.J. (2000). Local electrode atom probes. Mater Char 44, 5985.CrossRefGoogle Scholar
Kerr, H.W., Cisse, J. & Bolling, G.F. (1974). Equilibrium and nonequilibrium peritectic transformations. Acta Metall 22, 677686.CrossRefGoogle Scholar
Knipling, K.E., Dunand, D.C. & Seidman, D.N. (2006). Criteria for developing castable, creep-resistant aluminum-based alloys—A review. Z Metallkd 97, 246265.CrossRefGoogle Scholar
Lee, H.S., Han, S.Z., Lee, H.M. & Lee, Z.H. (1993). Coarsening behavior of L12 precipitates in melt-spun Al-Ti-V-Zr alloys. Mater Sci Eng A 163, 8190.CrossRefGoogle Scholar
Lewis, R.E., Crooks, D.D., Chen, Y.C., Fine, M.E. & Weertman, J.R. (1987). High temperature Al-Zr-V alloys using rapid solidification processing. In Proceedings of the 3rd International Conference on Creep and Fracture of Engineering Materials and Structures, Wilshire, B. & Evans, R.W. (Eds.), pp. 331346. London: The Institute of Metals.
Majumdar, A. & Muddle, B.C. (1993). Microstructure in rapidly solidified Al-Ti alloys. Mater Sci Eng A 169, 135147.CrossRefGoogle Scholar
Malek, P., Bartuska, P. & Plestil, J. (1999). Structure and properties of melt-spun Al-Zr-Ti alloys: Part I. Composition of as-melt-spun ribbons. Kovove Materialy 37, 386398.Google Scholar
Malek, P., Chalupa, B. & Plestil, J. (2000a). Structure and properties of melt-spun Al-Zr-Ti alloys: Part III. Phase transformations at elevated temperatures. Kovove Materialy 38, 7795.Google Scholar
Malek, P., Janecek, M. & Bartuska, P. (2002). Structure and properties of a powder metallurgy Al-Zr-Ti alloy. Kovove Materialy 40, 371388.Google Scholar
Malek, P., Janecek, M. & Smola, B. (2000b). Structure and properties of melt-spun Al-Zr-Ti alloys: Part IV. Microstructure and microhardness stability at elevated temperatures. Kovove Materialy 38, 160177.Google Scholar
Malek, P., Janecek, M., Smola, B. & Bartuska, P. (2000c). Structure and properties of melt-spun Al-Zr-Ti alloys: Part II. The solidification microstructure and microhardness. Kovove Materialy 38, 920.Google Scholar
Malek, P., Janecek, M., Smola, B. & Bartuska, P. (1994). High temperature stability of an Al-Zr-Ti alloy. Key Eng Mater 97–98, 6572.Google Scholar
Marquis, E.A. & Seidman, D.N. (2001). Nanoscale morphological evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater 49, 19091919.CrossRefGoogle Scholar
Marquis, E.A. & Seidman, D.N. (2004). Nanostructural evolution of Al3Sc precipitates in an Al-Sc-Mg alloy by three-dimensional atom probe. Surf Interface Anal 36, 559563.CrossRefGoogle Scholar
Marquis, E.A., Seidman, D.N., Asta, M. & Woodward, C. (2006). Composition evolution of nanoscale precipitates in an Al-Mg-Sc alloy: Experiments and computations. Acta Mater 54, 119130.CrossRefGoogle Scholar
Marquis, E.A., Seidman, D.N., Asta, M., Woodward, C.M. & Ozolinš, V. (2003a). Segregation at Al/Al3Sc heterophase interfaces on an atomic scale: Experiments and computations. Phys Rev Lett 91, 036101-1036101-4.Google Scholar
Marquis, E.A., Seidman, D.N. & Dunand, D.C. (2003b). Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Mater 51, 285287.Google Scholar
Marumo, T., Fujikawa, S. & Hirano, K. (1973). Diffusion of zirconium in aluminum. J Japan Inst Light Metals 23, 1725.CrossRefGoogle Scholar
Miller, M.K. (2000a). Atom Probe Tomography: Analysis at the Atomic Level. New York: Kluwer Academic/Plenum Publishers.
Miller, M.K. (2000b). The development of atom probe field-ion microscopy. Mater Char 44, 1127.Google Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford, UK: Oxford University Press.
Miller, M.K. & Hetherington, M.G. (1991). Local magnification effects in the atom probe. Surf Sci 246, 442449.CrossRefGoogle Scholar
Ohashi, T. & Ichikawa, R. (1970). Effect of Fe and Si on age hardening properties of supersaturated solid solutions of Al-Zr alloy by rapid solidification. J Japan Inst Metals 34, 604610.CrossRefGoogle Scholar
Parameswaran, V.R., Weertman, J.R. & Fine, M.E. (1989). Coarsening behavior of L12 phase in an Al-Zr-Ti alloy. Scripta Metall 23, 147150.CrossRefGoogle Scholar
Park, W.W. & Kim, T.H. (1988). Age hardening phenomena in rapidly solidified Al alloys. Scripta Metall 22, 17091714.CrossRefGoogle Scholar
Ringer, S.P. & Hono, K. (2000). Microstructural evolution and age hardening in aluminium alloys: Atom probe field-ion microscopy and transmission electron microscopy studies. Mater Char 44, 101131.CrossRefGoogle Scholar
Rummel, G., Zumkley, T., Eggersmann, M., Freitag, K. & Mehrer, H. (1995). Diffusion of implanted 3d-transition elements in aluminum. Part I: Temperature dependence. Z Metallkd 86, 122130.Google Scholar
Sato, T., Kamio, A. & Lorimer, G.W. (1996). Effects of Si and Ti additions on the nucleation and phase stability of the L12-type Al3Zr phase in Al-Zr alloys. Mater Sci Forum 217–222, 895900.CrossRefGoogle Scholar
Seidman, D.N., Marquis, E.A. & Dunand, D.C. (2002). Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Mater 50, 40214035.CrossRefGoogle Scholar
Sha, G. & Cerezo, A. (2005). Field ion microscopy and 3-D atom probe analysis of Al3Zr particles in 7050 Al alloy. Ultramicroscopy 102, 151159.CrossRefGoogle Scholar
Tolley, A., Radmilovic, V. & Dahmen, U. (2005). Segregation in Al3(Sc,Zr) precipitates in Al-Sc-Zr alloys. Scripta Mater 52, 621625.CrossRefGoogle Scholar
Tsau, C.H. & Chen, Y.C. (2002). The coarsening of the precipitates in melt-spun Al-Ti-Zr ribbons. Mater Chem Phys 73, 111117.CrossRefGoogle Scholar
Tsong, T.T. (1978). Field ion image formation. Surf Sci 70, 211233.CrossRefGoogle Scholar
Tsunekawa, S. & Fine, M.E. (1982). Lattice parameters of Al3(ZrxTi1−x) vs x in Al-2at.%(Ti+Zr) alloys. Scripta Metall 16, 391392.CrossRefGoogle Scholar
van Dalen, M.E., Dunand, D.C. & Seidman, D.N. (2005). Effects of Ti additions on the nanostructure and creep properties of precipitation-strengthened Al-Sc alloys. Acta Mater 53, 42254235.CrossRefGoogle Scholar
Vurpillot, F., Bostel, A. & Blavette, D. (2000). Trajectory overlaps and local magnification in three-dimensional atom probe. Appl Phys Lett 76, 31273129.CrossRefGoogle Scholar
Vurpillot, F., Cerezo, A., Blavette, D. & Larson, D.J. (2004). Modeling image distortions in 3DAP. Microsc Microanal 10, 384390.CrossRefGoogle Scholar
Zedalis, M. & Fine, M.E. (1983). Lattice parameter variation of Al3(Ti,V,Zr,Hf) in Al-2at.%(Ti,V,Zr,Hf) alloys. Scripta Metall 17, 12471251.Google Scholar
Zedalis, M.S. & Fine, M.E. (1986). Precipitation and Ostwald ripening in dilute Al base-Zr-V alloys. Metall Trans A 17, 21872198.CrossRefGoogle Scholar
File 1.2 MB

Knipling et al

Figure 3. 5 nm slice moving through a reconstruction of an A13(Zr,Ti) precipitate. Further it illustrates the discussed local magnification effect.

Download Knipling et al(Video)
Video 315.6 KB