Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T04:29:02.705Z Has data issue: false hasContentIssue false

Are Common Atom Form Factors in HREM-Simulations Accurate Enough for Quantitative Image Matching?

Published online by Cambridge University Press:  02 July 2020

G. Möbus
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, D-70174Stuttgart, Germany
T. Gemming
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, D-70174Stuttgart, Germany
W. Nüchter
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, D-70174Stuttgart, Germany
M. Exner
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, D-70174Stuttgart, Germany
P. Gumbsch
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, D-70174Stuttgart, Germany
A. Weickenmeier
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, D-70174Stuttgart, Germany
M. Wilson
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, D-70174Stuttgart, Germany
M. Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, D-70174Stuttgart, Germany
Get access

Extract

1.Introduction:If digital image matching between an experimental HREM-image and the simulated image fails, one of the suggested reasons is the “inaccuracy of the atomic form factors“ describing the electron scattering in common simulation packages using the free and neutral atom approximation from Hartree-Fock calculations [1]. In detail, three contributions within the usual form factor calculations are mainly missing: (i) the redistribution of charge in ionic crystals, (ii) the accumulation of charge away from atom sites in covalent crystals, (iii) the inclusion of thermal diffuse scattering (TDS) as well as the correlated vibration of atoms beyond the Einstein-approximation within the Debye-Waller factor (DWF) theory. Each of the three effects have been checked separately:

2.Simulations of TDS by Coupling of Molecular Dynamics Time Series to HREM- Multislice Calculations:70 snap shots of a series of structures of NiAl (4.9 × 5.1 × l0nm) are stored from an equilibrated molecular dynamics simulation with vibration amplitudes corresponding to room temperature.

Type
Computational Methods for Microscopy
Copyright
Copyright © Microscopy Society of America 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Int.Tab. X-Ray Cryst. IV, Ibers, J.A.et al.,eds, Kynoch,Birmingham (1974).Google Scholar

2. Bird, D. and King, Q., Acta Cryst A 46, 202 (1990).CrossRefGoogle Scholar

3. Mobus, G., Gemming, T. and Gumbsch, P., Acta Cryst A, submitted (1997).Google Scholar

4. Rez, D., Rez, P. and Grant, I., Acta Cryst. A 50, 481 (1994).CrossRefGoogle Scholar

5. Anstis, G.R., Hu, M, Wenk, H-R. and O’Keefe, M., Acta Cryst A 29, 138.CrossRefGoogle Scholar

6. Payne, M.C.et al., Rev. Mod. Phys. 64 1045 (1992).CrossRefGoogle Scholar

7. Wilson, M., Exner, M., Huang, Y.M. and Finnis, M.W., Phys. Rev. B, 54, 1583 (1996)Google Scholar

8. Gemming, T.et al., Proceedings of 11th EUREM, Dublin, CDROM-T14, (1996).Google Scholar

9. Stobbs, S.H. and Stobbs, W.M., Proc. of EMAG95, IOP 147, Birmingham, p. 83Google Scholar

10. Zuo, J.M. and Spence, J.C.H., Ultramicr. 35, 185 (1991).CrossRefGoogle Scholar

11. Deininger, C., Necker, G. and Mayer, J., Ultramicr. 54, 15 (1994).CrossRefGoogle Scholar

12. Nüchter, W., Weickenmeier, A. and Mayer, J., Proc. of EMAG95, IOP 147, Birmingham, p. 129.Google Scholar

13. We acknowledge Mike Finnis for valuable contributions. This work is funded in part by the Stiftung, VW-, German-Israeli-Foundation (# 0281-040.10/93) and BRITE-EURAM (BRE2-0605).Google Scholar