Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T17:35:46.289Z Has data issue: false hasContentIssue false

Application of Scanning Electron Microscopy/Energy-Dispersive X-Ray Spectroscopy for Characterization of Detrital Minerals in Karst Cave Speleothems

Published online by Cambridge University Press:  25 February 2016

Nina Zupančič*
Affiliation:
Department of Geology, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, SI-1000 Ljubljana, Slovenia Ivan Rakovec Institute of Palaeontology, ZRC SAZU, Novi trg 2, SI-1000 Ljubljana, Slovenia
Miloš Miler
Affiliation:
Geological Survey of Slovenia, Dimičeva ulica 14, SI-1000 Ljubljana, Slovenia
Stanka Šebela
Affiliation:
Karst Research Institute, ZRC SAZU, Titov trg 2, SI-6230 Postojna, Slovenia
Simona Jarc
Affiliation:
Department of Geology, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, SI-1000 Ljubljana, Slovenia
*
*Corresponding author. [email protected]
Get access

Abstract

Micro-scale observations in karst caves help to identify different processes that shaped local morphology. Scanning electron microscopy/energy-dispersive X-ray spectroscopy inspection of speleothems from two karst caves in Slovenia, Predjama and Črna Jama, confirmed the presence of sub-angular to sub-rounded detrital fragments of clay minerals, feldspars, quartz, Fe-oxides/hydroxides, rutile and Nb-rutile, xenotime, kassite, allanite, fluorapatite, epidote, ilmenite, monazite, sphene, and zircon, between 2 and 50 μm across. These occur in porous layers separating calcite laminae in the clayey coating on the layer below the surface of the speleothems, and are also incorporated within actual crystals. It is likely that they are derived from the weathered rocks of the Eocene flysch. Probably they were first transported into the caves by floodwaters forming cave sediments. Later, depending upon the climate conditions, they were moved by air currents or by water to the surface of active speleothems. They might also be redeposited from overlying soils enriched with wind-transported minerals from the flysch, or from higher passages filled with weathered flysch sediment, by drip water percolating through the fissured limestone. As some of the identified minerals are carriers of rare earth elements, Ti and Zr, their presence could affect any palaeoclimatic interpretations that are based upon the geochemical composition of the speleothems.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso-Zarza, A.M. & Martín-Pérez, A. (2008). Dolomite in caves: Recent dolomite formation in oxic, non-sulfate environments. Castañar Cave, Spain. Sediment Geol 205, 160164.CrossRefGoogle Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. & Nichols, M.C. (2009). The Handbook of Mineralogy. Chantilly, VA: Mineralogical Society of America. Available at mineralogy.org/ (retrieved September 22, 2014).Google Scholar
Babić, L., Zupanič, J., Vidović, J., Razum, I., Lužar-Oberiter, B. & Crnjaković, M. (2013). Preservation of hanging aeolian deposits in insular karst depressions: Sediment sources and implications for the Pleistocene palaeogeography of the SE Adriatic archipelago. Aeolian Res 11, 171189.CrossRefGoogle Scholar
Baker, A., Smart, P.L., Edwards, R.L. & Richards, D.A. (1993). Annual growth banding in a cave stalagmite. Nature 364, 518520.CrossRefGoogle Scholar
Barthelmy, D. (2010). The mineralogy database. Available at http://webmineral.com/ (retrieved September 22, 2014).Google Scholar
Borsato, A., Frisia, S., Fairchild, I.J., Somogyi, A. & Susini, J. (2007). Trace element distribution in annual stalagmite laminae mapped by micrometer-resolution X-ray fluorescence: Implications for incorporation of environmentally significant species. Geochim Cosmochim Acta 71, 14941512.CrossRefGoogle Scholar
Bortolozzi, G., Boscardin, M., Rochetti, I. & Bersani, D. (2013). Cafetite e kassite della Cava di Pilcante in Val d’Adige (Ala, Trento). Micro 11, 3948. (in Italian).Google Scholar
Buser, S. (1974). Basic Geological Map of SFRJ. 1:100. 000. The Interpreter of Section Ribnica: L 33-76. Beograd: Zvezni geološki zavod. (in Slovenian).Google Scholar
Čar, J. & Šebela, S. (2001). Karst characteristics of thrust contact limestone-dolomite near Predjama. Acta Carsol 30, 141156.Google Scholar
Desmarchelier, J.M., Hellstrom, J.C. & McCulloch, M.T. (2006). Rapid trace element analysis of speleothems by ELA-ICP-MS. Chem Geol 231, 102117.CrossRefGoogle Scholar
Dredge, J., Fairchild, I.J., Harrison, R.M., Fernandez-Cortes, A., Sanchez-Moral, S., Jurado, V., Gunn, J., Smith, A., Spötl, C., Mattey, D., Wynne, P.M. & Grassineau, N. (2013). Cave aerosols: Distribution and contribution to speleothem geochemistry. Quat Sci Rev 63, 2341.CrossRefGoogle Scholar
Duan, F., Liu, D., Cheng, H., Wang, X., Wang, Y., Kong, X. & Chen, S. (2014). A high-resolution monsoon record of millennial-scale oscillations during late MIS 3 from Wulu Cave, south-west China. J Quat Sci 29, 8390.CrossRefGoogle Scholar
Duan, W., Singh Kotlia, B. & Tan, M. (2013). Mineral composition and structure of the stalagmite laminas from Chulerasim cave, Indian Himalaya, and the significance for palaeoclimatic reconstruction. Quat Int 298, 9397.CrossRefGoogle Scholar
Durn, G. (2003). Terra rossa in the Mediterranean region: Parent materials, composition and origin. Geol Croat 56, 83100.CrossRefGoogle Scholar
The EUMETSAT Website (2014). A cloud of dust from Tunisia brought coloured snow to Italy and rain to other parts of Europe, on 19 February. http://www.eumetsat.int/website/home/Images/ImageLibrary/DAT_2104098.html (retrieved July 3, 2014).Google Scholar
Fairchild, I.J., Baker, A., Borsato, A., Frisia, S., Hinton, R.W., McDermott, F. & Tooth, A.F. (2001). Annual to sub-annual resolution of multiple trace-element trends in speleothems. J Geol Soc London 158, 831841.CrossRefGoogle Scholar
Fairchild, I.J., Smith, C.L., Baker, A., Fuller, L., Spötl, C., Mattey, D. & McDermott, F. (2006). Modification and preservation of environmental signals in speleothems. Earth Sci Rev 75, 105153.CrossRefGoogle Scholar
Fairchild, I.J. & Treble, P.C. (2009). Trace elements in speleothems as recorders of environmental change. Quat Sci Rev 28, 449468.CrossRefGoogle Scholar
Fernandez-Cortes, A., Cuezva, S., Garcia-Anton, E., Garcia-Guinea, J. & Sanchez-Moral, S. (2011). Rare earth elements in a speleothem analyzed by ICP-MS, EDS, and spectra cathodoluminescence. Spectrosc Lett 44, 474479.CrossRefGoogle Scholar
Frisia, S., Borsato, A., Preto, N. & McDermott, F. (2003). Late Holocene annual growth in three Alpine stalagmites records the influence of solar activity and the North Atlantic Oscillation on winter climate. Earth Planet Sci Lett 216, 411424.CrossRefGoogle Scholar
Frost, R.L., Xia, Y., Palmera, S.J. & Pogson, R.E. (2012). Identification of montgomeryite mineral [Ca4MgAl4(PO4)6·(OH)4·12H2O] found in the Jenolan Caves—Australia. Spectrochim Acta A 94, 15.CrossRefGoogle ScholarPubMed
Gabrovšek, F. & Dreybrodt, W. (2001). A model of the early evolution of karst aquifers in limestone in the dimensions of length and depth. J Hydrol 240, 206224.CrossRefGoogle Scholar
Gams, I. (1974). Karst. Ljubljana: Slovenska matica. (in Slovenian).Google Scholar
Gams, I. (2003). Karst in Slovenia in Space and Time. Ljubljana: Založba ZRC, ZRC SAZU. (in Slovenian).Google Scholar
Gázquez, F., Calaforra, J.M., Forti, P., Stoll, H., Ghaleb, B. & Delgado-Huertas, A. (2014). Paleoflood events recorded by speleothems in caves. Earth Surf Process Landforms 39, 13451353.CrossRefGoogle Scholar
Genty, D., Baker, A., Massault, M., Proctor, C., Gilmour, M., Pons-Branchu, E. & Hamelin, B. (2001). Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems. Geochim Cosmochim Acta 65, 34433457.CrossRefGoogle Scholar
Genty, D. & Massault, M. (1997). Bomb 14C recorded in laminated speleothems: Calculation of dead carbon proportion. Radiocarbon 39, 3348.CrossRefGoogle Scholar
Genty, D. & Massault, M. (1999). Carbon transfer dynamics from bomb-14C and δ13C time series of a laminated stalagmite from SW France—Modelling and comparison with other stalagmite records. Geochim Cosmochim Acta 63, 15371548.CrossRefGoogle Scholar
Genty, D. & Quinif, Y. (1996). Annually laminated sequences in the internal structure of some Belgium stalagmites—Importance for paleoclimatology. J Sediment Res 66, 275288.Google Scholar
Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L. & Michael, J.R. (2003). Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Goldstein, S.J. & Jacobsen, S.B. (1988). Rare earth elements in river waters. Earth Planet Sci Lett 89, 3547.CrossRefGoogle Scholar
Gospodarič, R. (1988). Palaeoclimatic record of cave sediments from Postojna karst. Ann Soc Géolog Belg T111, 9195.Google Scholar
Herak, M. (1972). Karst of Yugoslavia. In Important Karst Regions of the Northern Hemisphere, Herak, M. & Stringfield, V.T. (Eds.), pp. 25–83. Amsterdam: Elsevier.Google Scholar
Hill, C. & Forti, P. (1997). Cave Minerals of the World. Huntsville, AL: National Speleological Society.Google Scholar
Hornak, M. & Stepišnik, U. (2008). The contribution to the understanding of the historic settlement of the southern part of the Ribnica Mala gora. Dela 30, 3949. (in Slovenian).CrossRefGoogle Scholar
Huang, Y.M., Fairchild, I.J., Borsato, A., Frisia, S., Cassidy, N.J., McDermott, F. & Hawkesworth, C.J. (2001). Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy). Chem Geol 175, 429448.CrossRefGoogle Scholar
Jeong, G.Y., Kim, S.J. & Chang, S.J. (2003). Black carbon pollution of speleothems by fine urban aerosols in tourist caves. Am Mineral 88, 18721878.CrossRefGoogle Scholar
Kranjc, A. (1980). The karst development in »Ribniška Mala Gora« (Slovenia, Yugoslavia). Acta Carsol 9, 2785. (in Slovenian with English Summary).Google Scholar
Küfmann, C. (2003). Soil types and eolian dust in high-mountainous karst of the Northern Calcareous Alps (Zugspitzplatt, Wetterstein Mountains, Germany). Catena 53, 211227.CrossRefGoogle Scholar
Lachniet, M.S. (2014). Climatic and environmental controls on speleothem oxygen-isotope values. Quat Sci Rev 28, 412432.CrossRefGoogle Scholar
Lauritzen, S.E., Lovlie, R., Moe, D. & Østbye, E. (1990). Paleoclimate deduced from a multidisciplinary study of a half-million year old stalagmite from Rana, Northern Norway. Quat Res 34, 306316.CrossRefGoogle Scholar
Lenaz, D. (2008). Detrital pyroxenes in the Eocene flysch of the Istrian Basin (Slovenia, Croatia). Geol Acta 6, 259266.Google Scholar
Lenaz, D., Alberti, A., Tunis, G. & Princivalle, F. (2001). A heavy mineral association and its paleogeographical implications in the Eocene Brkini flysch basin (Slovenia). Geol Carpath 52, 239245.Google Scholar
Lenaz, D., Kamenetsky, V.S. & Princivalle, F. (2003). Cr-spinel supply in the Brkini, Istrian and Krk Island flysch basins (Slovenia, Italy and Croatia). Geol Mag 140, 335342.CrossRefGoogle Scholar
Maltsev, V.A. (1993). Minerals of the Cupp-Coutunn Karst Cave System, Southeast Turkmenistan: World of Stones. Moscow: Plus Ltd.Google Scholar
Maltsev, V.A. (1997). Speleothems of aerosol origin: Discussion. J Cave Karst Stud 59, 43.Google Scholar
McDermott, F. (2004). Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. Quat Sci Rev 23, 901918.CrossRefGoogle Scholar
Michie, N.A. (1999). An instrument and method for measurement of dust fall in caves. National Cave and Karst Management Symposium, October 19–22, 1999. Chattanooga, TN, USA, pp. 123–128.Google Scholar
Mikes, T., Dunkl, I. & Frisch, W. (2004). Provenance mixing in a foreland basin as revealed by sandstone geochemistry and detrital zircon fission track analysis: The Eocene flysch of the NW Dinarides. In 23rd IAS Meeting of Sedimentology, Pena dos Reis, R., Callapez, P. & Dinis, P. (Eds.), pp. 1517. Coimbra: September 15–17, 2004.Google Scholar
Miler, M. (2014). SEM/EDS characterisation of dusty deposits in precipitation and assessment of their origin. Geologija 57, 716.CrossRefGoogle Scholar
Ogorelec, B. & Rothe, P. (1993). Mikrofazies, Diagenese und Geochemie des Dachsteinkalkes und Hauptdolomits in Süd-West-Slowenien. Geologija 35, 81181. (in German).CrossRefGoogle Scholar
Onac, B.P., Bengeanu, M., Botez, M. & Zeh, J. (1995). Preliminary report on the mineralogy of Valea Rea cave (Bihor Mountains, Romania). Theor Appl Karstol 8, 7579.Google Scholar
Onac, B.P., Hess, J.W. & White, W.B. (2007). The relationship between the mineral composition of speleothems and mineralization of breccia pipes: Evidence from Corkscrew cave, Arizona, USA. Can Mineral 45, 11771188.CrossRefGoogle Scholar
Onac, B.P. & Forti, P. (2011). Minerogenetic mechanisms occurring in the cave environment: An overview. Int J Speleol 40, 7998.CrossRefGoogle Scholar
Orehek, S. (1972). The Eocene flysch of Pivška kotlina and Brkini. 7th SFRJ Geologists Congress, 2, Zagreb 1970, 253–270 (in Slovenian).Google Scholar
Oxford Instruments (2006). INCA Energy Operator Manual. High Wycombe: Oxford Instruments Analytical Ltd.Google Scholar
Pleničar, M. (1970). Basic Geological Map of SFRJ. 1:100. 000. The Interpreter of Section Postojna: L 33-77. Beograd: Zvezni geološki zavod. (in Slovenian).Google Scholar
Pleničar, M. & Dozet, S. (1994). Contribution to the knowledge of Upper Cretaceous beds in Kočevje and Gorski Kotor Area (NW Dinarides). Geologija 36, 183194.CrossRefGoogle Scholar
Proctor, C.J., Baker, A. & Barnes, W.L. (2002). A three thousand year record of North Atlantic climate change. Clim Dynam 19, 449454.Google Scholar
Proctor, C.J., Baker, A., Barnes, W.L. & Gilmour, M.A. (2000). A thousand year speleothem proxy record of North Atlantic climate from Scotland. Clim Dynam 16, 815820.CrossRefGoogle Scholar
Salata, D. (2013). Heavy minerals as detritus provenance indicators for the Jurassic pre-Callovian palaeokarst infill from the Czatkowice Quarry (Kraków–Wieluñ Upland, Poland). Geol Q 57, 537550.Google Scholar
Sasowsky, I.D. & Mylroie, J.E. (Eds.) (2004). Studies of Cave Sediments: Physical and Chemical Records of Paleoclimate. New York: Kluwer Academic.CrossRefGoogle Scholar
Šebela, S. (2012). Historic inscriptions in Predjama cave system and high floods in 2010. Acta Carsol 41, 297303.CrossRefGoogle Scholar
Šebela, S. & Turk, J. (2014). Sustainable use of the Predjama cave (Slovenia) and possible scenarios related to anticipated major increases in tourist numbers. Tour Manage Perspect 10, 3745.Google Scholar
Shopov, Y.Y., Ford, D.C. & Schwarcz, H.P. (1994). Luminescent microbanding in speleothems: High resolution chronology and paleoclimate. Geology 22, 407410.2.3.CO;2>CrossRefGoogle Scholar
Skaberne, D., Kralj, P. & Budkovič, T. (2009). Soil on Upper Triassic carbonate rocks of western Karavanke and Julian Alps highlands. Geologija 52, 4968. (in Slovenian).CrossRefGoogle Scholar
Strunz, H. & Nickel, E.H. (2001). Strunz Mineralogical Tables. Chemical-Structural Mineral Classification System, 9th ed. Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung.Google Scholar
Šroubek, P., Diehl, J.F. & Kadlec, J. (2007). Historical climatic record from flood sediments deposited in the interior of Spirálka Cave, Czech Republic. Palaeogeogr Palaeoclimatol Palaeoecol 251, 547562.CrossRefGoogle Scholar
Tămaş, T., Kristály, F. & Barbu-Tudoran, L. (2011). Mineralogy of Iza cave (Rodnei Mountains, N. Romania). Int J Speleol 40, 171179.CrossRefGoogle Scholar
Tremul, A., Calligaris, R., Lenaz, D. & Princivalle, F. (2001). Preliminary report on sediments from Pocala cave: Sedimentological and heavy mineral analysis. Cad Lab Xeol Laxe 26, 497502.Google Scholar
Tucker, M. (2001). Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks, 3rd ed. Oxford: Wiley-Blackwell.Google Scholar
White, W.B. (1976). Cave minerals and speleothems. In The Science of Speleology, Ford, T.D. & Cullingford, C.H.D. (Eds.), pp. 267327. London: Academic Press.Google Scholar
White, W.B. (2007). Cave sediments and paleoclimate. J Cave Karst Stud 69, 7693.Google Scholar
Zack, T., Kronz, A., Foley, S.F. & Rivers, T. (2002). Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem Geol 184, 97122.CrossRefGoogle Scholar
Zhou, H., Greig, A., Tang, J., You, C.F., Yuan, D., Tong, X. & Huang, Y. (2102). Rare earth element patterns in a Chinese stalagmite controlled by sources and scavenging from karst groundwater. Geochim Cosmochim Acta 83, 118.CrossRefGoogle Scholar
Zupan Hajna, N., Mihevc, A., Pruner, P. & Bosák, P. (2008). Palaeomagnetism and Magnetostratigraphy of Karst Sediments in Slovenia, Carsologica 8. Postojna-Ljubljana: Založba ZRC.CrossRefGoogle Scholar
Zupan Hajna, N., Mihevc, A., Pruner, P. & Bosák, P. (2010). Palaeomagnetic research on karst sediments in Slovenia. Int J Speleol 39, 4760.CrossRefGoogle Scholar