Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T14:57:40.615Z Has data issue: false hasContentIssue false

The Application of Scanning Electron Microscopy with Energy-Dispersive X-Ray Spectroscopy (SEM-EDX) in Ancient Dental Calculus for the Reconstruction of Human Habits

Published online by Cambridge University Press:  20 November 2017

Dana Fialová*
Affiliation:
Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
Radim Skoupý
Affiliation:
Institute of Scientific Instruments of the CAS, Královopolská 147, 612 64 Brno, Czech Republic
Eva Drozdová
Affiliation:
Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
Aleš Paták
Affiliation:
Institute of Scientific Instruments of the CAS, Královopolská 147, 612 64 Brno, Czech Republic
Jakub Piňos
Affiliation:
Institute of Scientific Instruments of the CAS, Královopolská 147, 612 64 Brno, Czech Republic
Lukáš Šín
Affiliation:
Archaeological Centre Olomouc, U Hradiska 6, 779 00 Olomouc, Czech Republic
Radoslav Beňuš
Affiliation:
Department of Anthropology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava 4, Slovak Republic
Bohuslav Klíma
Affiliation:
Department of History, Faculty of Education, Masaryk University, Poříčí 9, 603 00 Brno, Czech Republic
*
*Corresponding author. [email protected]
Get access

Abstract

The great potential of scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) is in detection of unusual chemical elements included in ancient human dental calculus to verify hypotheses about life and burial habits of historic populations and individuals. Elemental spectra were performed from archeological samples of three chosen individuals from different time periods. The unusual presence of magnesium, aluminum, and silicon in the first sample could confirm the hypothesis of high degree of dental abrasion caused by particles from grinding stones in flour. In the second sample, presence of copper could confirm that bronze jewelery could lie near the buried body. The elemental composition of the third sample with the presence of lead and copper confirms the origin of individual to Napoleonic Wars because the damage to his teeth could be explained by the systematic utilization of the teeth for the opening of paper cartridges (a charge with a dose of gunpowder and a bullet), which were used during the 18th and the 19th century AD. All these results contribute to the reconstruction of life (first and third individual) and burial (second individual) habits of historic populations and individuals.

Type
Micrographia
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arensburg, B. (1996). Ancient dental calculus and diet. Hum Evol 11, 139145.Google Scholar
Blatt, S.H., Redmond, B.G., Cassman, V. & Sciulli, P.W. (2011). Dirty teeth and ancient trade: Evidence of cotton fibres in human dental calculus from Late Woodland, Ohio. Int J Osteoarchaeol 21, 669678.Google Scholar
Boyadjian, C.H.C., Eggers, S. & Reinhard, K. (2007). Dental wash: A problematic method for extracting microfossils from teeth. J Archaeol Sci 34, 16221628.Google Scholar
Bruzek, J. (2002). A method for visual determination of sex, using the human hip bone. Am J Phys Anthropol 117, 157168.Google Scholar
Charlier, P., Huynh-Charlier, I., Munoz, O., Billard, M., Brun, L. & de la Grandmaison, G.L. (2010). The microscopic (optical and SEM) examination of dental calculus deposits (DCD). Potential interest in forensic anthropology of a bio-archaeological method. Leg Med (Tokyo) 12, 163171.Google Scholar
Curtze, S.C., Kratz, M., Steinert, M. & Vogt, S. (2016). Step down vascular calcification analysis using state-of-the-art nanoanalysis techniques. Sci Rep 6, 23285.Google Scholar
Cusack, M., England, J., Dalbeck, P., Tudhope, A.W., Fallick, A.E. & Allison, N. (2008). Electron backscatter diffraction (EBSD) as a tool for detection of coral diagenesis. Coral Reefs 27, 905911.Google Scholar
Dudgeon, J.V. & Tromp, M. (2014). Diet, geography and drinking water in Polynesia: Microfossil research from archaeological human dental calculus, Rapa Nui (Easter Island). Int J Osteoarchaeol 24, 634648.Google Scholar
Fialová, D., Drozdová, E., Skoupý, R., Mikulík, P. & Klíma, B. (2017). Scanning electron microscopy of dental calculus from the Great Moravian necropolis Znojmo-Hradiště. Anthropologie 55, 343351.Google Scholar
Fox, C.L., Juan, J. & Albert, R.M. (1996). Phytolith analysis on dental calculus, enamel surface, and burial soil: Information about diet and paleoenvironment. Am J Phys Anthropol 101, 101113.Google Scholar
Gron, P., Van Campen, G.J. & Lindstrom, I. (1967). Human dental calculus. Inorganic chemical and crystallographic composition. Arch Oral Biol 12, 829837.Google Scholar
Grellet-Tinner, G., Sim, C.M., Kim, D.H., Trimby, P., Higa, A., An, S.L., Oh, H.S., Kim, T.J. & Kardjilov, N. (2011). Description of the first lithostrotian titanosaur embryo in ovo with Neutron characterization and implications for lithostrotian Aptian migration and dispersion. Gondwana Res 20, 621629.Google Scholar
Hardy, K., Blakeney, T., Copeland, L., Kirkham, J., Wrangham, R. & Collins, M. (2009). Starch granules, dental calculus and new perspectives on ancient diet. J Archaeol Sci 36, 248255.Google Scholar
Hardy, K., Buckley, S., Collins, M.J., Estalrrich, A., Brothwell, D., Copeland, L., García-Tabernero, A., García-Vargas, S., Rasilla, M., Lalueza-Fox, C., Huguet, R., Bastir, M., Santamaría, D., Madella, M., Wilson, J., Cortés, Á.F. & Rosas, A. (2012). Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99, 617626.Google Scholar
Harmadyová, K. (2009). Včasnostredoveká keramika z devínskeho mikroregiónu v 8.-10. storočí. Unpublished dissertation thesis. Comenius University, Bratislava.Google Scholar
Hershkovitz, I., Kelly, J., Latimer, B., Rothschild, B.M., Simpson, S., Polak, J. & Rosenberg, M. (1997). Oral bacteria in miocene Sivapithecus. J Hum Evol 33, 507512.Google Scholar
Kakei, M., Sakae, T. & Yoshikawa, M. (2009). Electron microscopy of octacalcium phosphate in the dental calculus. J Electron Microsc (Tokyo) 58, 393398.Google Scholar
Linossier, A., Gajardo, M. & Olavarria, J. (1996). Paleomicrobiological study in dental calculus: Streptococcus mutans. Scanning Microsc 10, 10051013. discussion 1014.Google Scholar
Lovejoy, C.O., Meindl, R.S., Pryzbeck, T.R. & Mensforth, R.P. (1985). Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of adult skeletal age at death. Am J Phys Anthropol 68, 1528.Google Scholar
Müllerová, I. & Lenc, M. (1992). Some approaches to low-voltage scanning electron microscopy. Ultramicroscopy 41(4), 399410.Google Scholar
Mutschelknauss, R.E. (2002). Praktická parodontologie: klinické postupy. Prague, CZ: Quintessenz.Google Scholar
Pap, I., Tillier, A.-M., Arensburg, B., Weiner, S. & Chech, M. (1995). First scanning electron microscope analysis of dental calculus from European Neanderthals: Subalyuk, (Middle Paleolithic, Hungary). Preliminary report. Bull Mem Soc Anthropol Paris 7, 6972.Google Scholar
Pérez-Huerta, A. & Cusack, M. (2009). Optimizing electron backscatter diffraction of carbonate biominerals – resin type and carbon coating. Microsc Microanal 15, 197203.Google Scholar
Piperno, D.R. & Henry, A.G. (2008). Using plant microfossils from dental calculus to recover human diet: a case study from Tell al-Raqā’i, Syria. J Archaeol Sci 35, 19431950.Google Scholar
Power, R.C., Salazar-García, D.C., Wittig, R.M. & Henry, A.G. (2014). Assessing use and suitability of scanning electron microscopy in the analysis of micro remains in dental calculus. J Archaeol Sci 49, 160169.Google Scholar
Preus, H.R., Marvik, O.J., Selvig, K.A. & Bennike, P. (2011). Ancient bacterial DNA (aDNA) in dental calculus from archaeological human remains. J Archaeol Sci 38, 18271831.Google Scholar
Roberts-Harry, E.A., Clerehugh, V., Shore, R.C., Kirkham, J. & Robinson, C. (2000). Morphology and elemental composition of subgingival calculus in two ethnic groups. J Periodontol 71, 14011411.Google Scholar
Šichnárková, S. (2014). Petrografický výzkum raně středověkých žernovů ze Znojma-Hradiště. 2014th ed. Unpublished Master’s thesis. Masaryk University, Brno.Google Scholar
Šín, L. & Vrána, J. (2014). Charakter pohřebního ritu jako odraz událostí 19. století na střední Moravě. Český lid 101, 149169.Google Scholar
Sjøvold, T. (1975). Tables of the combined method for determination of age at death given by Nemeskéri, Harsányi and Acsádi. Anthropol Kozl 19, 922.Google Scholar
Smith, B.H. (1984). Patterns of molar wear in hunter–gatherers and agriculturalists. Am J Phys Anthropol 63, 3956.Google Scholar
Sundberg, M. & Friskopp, J. (1985). Crystallography of supragingival and subgingival human dental calculus. Scand J Dent Res 93, 3038.Google Scholar
Vandermeersch, B., Arensburg, B., Tillier, A.M., Rak, Y., Weiner, S., Spiers, M. & Aspillaga, E. (1994). Middle palaeolithic dental bacteria from Kebara, Israel. C R Acad Sci Serie Ii 319, 727731.Google Scholar