Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T02:51:40.708Z Has data issue: false hasContentIssue false

Analysis of Chemical Changes and Microstructure Characterization during Deformation in Ferritic Stainless Steel

Published online by Cambridge University Press:  29 April 2013

Andrés Núñez*
Affiliation:
Departamento I+D+i, ACERINOX EUROPA S.A.U., Pol. Industrial Palmones s/n, ES-11379 Los Barrios, Spain
Xavier Llovet
Affiliation:
Centres Científics i Tecnològics (CCiT), Universitat de Barcelona, Lluís Solé i Sabarís, 1-3, ES-08028 Barcelona, Spain
Juan F. Almagro
Affiliation:
Departamento I+D+i, ACERINOX EUROPA S.A.U., Pol. Industrial Palmones s/n, ES-11379 Los Barrios, Spain
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Uni- and biaxial tension deformation tests, with different degrees of deformation, have been done on AISI 430 (EN 1.4016) ferritic stainless steel samples, which had both different chemical compositions and had undergone different annealing treatments. The initial and deformed materials were characterized by using electron backscatter diffraction and backscatter electron imaging in a scanning electron microscope together with electron probe microanalysis. The correlation observed among the chemical compositions, annealing treatment, and strain level obtained after deformation is discussed.

Type
EBSD Special Section
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almagro, J.F., Llovet, X., Heredia, M.A., Luna, C. & Sánchez, R. (2008). Soluble fraction of stabilizing elements in ferritic stainless steel. Mikrochim Acta 161, 323327.Google Scholar
Benthem, K., Krämer, S., Sigle, W. & Rühle, M. (2002). Structural and chemical analysis of materials with high spatial resolution. Mikrochim Acta 138, 181193.CrossRefGoogle Scholar
Da Costa, C.S., Candido, F.S. & Pinto, A.L. (2005). An EBSD analysis of the origins of ridging in AISI 430 steel sheets. Mat Sci Forum 495497, 173178.Google Scholar
Epishin, A., Link, T. & Nolze, G. (2007). SEM investigation of interfacial dislocations in nickel-base superalloys. J Microsc 228, 110117.Google Scholar
Ferreira, H., Santana, S., Neto, P., Pires, R., Nogueira, V., de Oliveira, P. & Souto, S. (2007). Deformation induced martensite in an AISI 301 LN stainless steel: Characterization and influence on pitting corrosion resistance. Mat Res 10, 359366.Google Scholar
Gobernado, P. (2004). Structure and properties of grain boundaries in electrical steels. PhD Thesis. Ghent, Belgium: Ghent University. Google Scholar
Gobernado, P., Petrov, R.H., Moerman, J., Barbatti, C. & Kestens, L.A.I. (2012). Origin of the {h11}⟨1/h,1,2⟩ fiber in single phase ferritic steels. Mat Sci Forum 715716, 134139.CrossRefGoogle Scholar
Gobernado, P., Petrov, R.H., Ruiz, D., Leunis, E. & Kestens, L.A.I. (2010). Texture evolution in Si-alloyed ultra low-carbon steels after severe plastic deformation. Adv Eng Mat 12, 10771081.CrossRefGoogle Scholar
Huh, M.Y. & Engler, O. (2001). Effect of intermediate annealing on texture, formability and ridging of 17% Cr ferritic stainless steel sheet. Mat Sci Eng A 308, 7487.CrossRefGoogle Scholar
Jaksch, H., Steigerwald, M. & Drexel, V. (2005). Technologies to characterize nanostructured particles and bulk materials. Microsc Microanal 11(Suppl 2), 758759.Google Scholar
Kamaladasa, R.J. & Picard, Y.N. (2010). Basic principles and application of electron channelling in a scanning electron microscope for dislocation analysis. In Microscopy: Science, Technology, Applications and Education, Méndez-Vilas, A. & Díaz, J. (Eds.), pp. 15831590. Badajoz, Spain: Formatex.Google Scholar
Karato, S. (1987). Scanning electron microscope observation of dislocations in olivine. Phys Chem Min 14, 245248.Google Scholar
Kestens, L. & Jonas, J.J. (2005). Transformation and recrystallization textures associated with steel processing. In ASM Handbook, vol. 14A, pp. 685700. Materials Park, OH: ASM International.Google Scholar
Kuwano, N., Itakura, M., Nagatomo, Y. & Tachibana, S. (2010). Scanning electron microscope observation of dislocations in semiconductor and metal materials. J Elec Microsc 59, 175181.Google Scholar
Núñez, A., Llovet, X. & Almagro, J.F. (2012). EPMA and EBSD analysis of the chemical and structural changes in 16 wt% chromium stainless steel during deformation. IOP Conf Ser: Mater Sci Eng 32, 012018. Google Scholar
Park, S.H., Kim, K.Y., Lee, Y.D. & Park, D.J. (2002). Evolution of microstructure and texture associated with ridging in ferritic stainless steel. ISIJ Int 42, 100105.CrossRefGoogle Scholar
Presslinger, H., Mayr, M., Tragl, E. & Bernhard, C. (2002). Assessment of the primary structure of slabs and the influence on hot- and cold-rolled strip structure. Steel Res Int 77, 107115.Google Scholar
Raabe, D. & Lücke, K. (1993). Textures of ferritic stainless steels. Mater Sci Tech 9, 302312.Google Scholar
Sato, Y.S., Nelson, T.W. & Sterling, C.J. (2005). Recrystallization in type 304L stainless steel during friction stirring. Acta Mater 53, 637645.Google Scholar
Shimada, M., Kokawa, H., Wang, Z.J., Sato, Y.S. & Karibe, I. (2002). Optimization of grain boundary character distribution for intergranular corrosion resistance 304 stainless steel by twin-induced grain boundary engineering. Acta Mater 50, 23312341.Google Scholar
Shin, H.J., An, J.K., Park, S.H. & Lee, D.N. (2003). The effect of texture on ridging of ferritic stainless steel. Acta Mater 51, 46934706.Google Scholar
Sinclair, C.W., Robaut, F., Maniguet, L., Mithieux, J.D., Schmitt, J.H. & Brechet, Y. (2003). Recrystallization and texture in a ferritic stainless steel: An EBSD study. Adv Eng Mater 5, 570574.Google Scholar
Trager-Cowan, C., Sweeney, F., Trimby, P.W., Day, A.P., Gholinia, A., Schmidt, N-H., Parbrook, P.J., Wilkinson, A.J. & Watson, I.M. (2007). Electron backscatter diffraction and electron channelling contrast imaging of tilt and dislocations in nitride thin films. Phys Rev B 75, 085301. Google Scholar
Yasuda, M., Kawata, H. & Murata, K. (1996). The spatial distribution of backscattered electrons calculated by a simple model. Phys Stat Sol (a) 153, 133144.CrossRefGoogle Scholar