Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T08:37:03.907Z Has data issue: false hasContentIssue false

Aging-Related Functional and Structural Changes in Renal Tissues: Lesson from a Camel Model

Published online by Cambridge University Press:  10 March 2021

Asmaa F. Khafaga*
Affiliation:
Pathology Department, Faculty of Veterinary Medicine, Alexandria University, Edfina22758, Egypt
Yaser H. A. Elewa
Affiliation:
Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig44519, Egypt
Mustafa S. Atta
Affiliation:
Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh33516, Egypt
Ahmed E. Noreldin
Affiliation:
Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour22511, Egypt
*
*Author for correspondence: Asmaa F. Khafaga, E-mail: [email protected]
Get access

Abstract

Renal aging is a progressive, physiological, and anatomical change that naturally occurs in all animal species. To date, no information is available concerning the aging-related structural and functional changes in camel kidneys. A total of 25 healthy male camels (14 aged 4–6 years and 11 aged 18–22 years) were included in this study. After the camels were slaughtered, samples were collected from all the camels’ kidneys and prepared for histopathological, immunohistochemical, and gene expression evaluations. The most striking observation was the significant decline in the immunohistochemical abundance of podocin and the significant upregulation of smoothening in the aging camels’ kidneys. However, the nonsignificant changes have reported for nephrin, calbindin, autophagy 5 (ATG5), aquaporin 1, and toll-like receptor 9. Furthermore, the mRNA expressions of sirtuin 1, superoxide dismutase 1, superoxide dismutase 2, peroxisome proliferator-activated receptor alpha, B-cell lymphoma 2 (Bcl-2), and erythropoietin were significantly decreased in the aging camels’ kidneys. While the significant upregulation of Bcl-2-associated X protein and the nonsignificant increase in ATG5 expression levels were reported in the aging camels’ kidneys. The present findings provide better understanding of the complex events and initiating factors of aging, allowing for the development of a future therapeutic strategy to preserve adequate renal function throughout life.

Type
Biological Applications
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdalla, MA & Abdalla, O (1979). Morphometric observations on the kidney of the camel, Camelus dromedarius. J Anat 129(Pt 1), 45.Google ScholarPubMed
Armbrecht, HJ, Boltz, M, Strong, R, Richardson, A, Bruns, ME & Christakos, S (1989). Expression of calbindin-D decreases with age in intestine and kidney. Endocrinology 125(6), 29502956.10.1210/endo-125-6-2950CrossRefGoogle ScholarPubMed
Asanuma, K & Mundel, P (2003). The role of podocytes in glomerular pathobiology. Clin Exp Nephrol 7(4), 255259.10.1007/s10157-003-0259-6CrossRefGoogle ScholarPubMed
Bancroft, JD & Layton, C (2013). The hematoxylin and eosin, connective and mesenchymal tissues with their stains. In Bancroft's Theory and Practice of Histological Techniques, Suvarna, KS, Layton, C, Bancroft, JD (Eds.), pp. 173186. Philadelphia: Churchill Livingstone.10.1016/B978-0-7020-4226-3.00010-XCrossRefGoogle Scholar
Bedford, JJ, Leader, JP & Walker, RJ (2003). Aquaporin expression in normal human kidney and in renal disease. J Am Soc Nephrol 14(10), 25812587.10.1097/01.ASN.0000089566.28106.F6CrossRefGoogle ScholarPubMed
Bragg, AW (1981). Data manipulation languages for statistical databases: The statistical analysis system (SAS). In Proceedings of the 1st LBL Workshop on Statistical Database Management, pp. 147–150. California: Lawrence Berkeley.Google Scholar
Chen, ML, Boltz, M, Christakos, S & Armbrecht, HJ (1992). Age-related alterations in calbindin-D28K induction by 1,25-dihydroxyvitamin D3 in primary cultures of rat renal tubule cells. Endocrinology 130(6), 32953300.10.1210/endo.130.6.1597142CrossRefGoogle ScholarPubMed
Chung, HY, Cesari, M, Anton, S, Marzetti, E, Giovannini, S, Seo, AY, Carter, C, Yu, BP & Leeuwenburgh, C (2009). Molecular inflammation: Underpinnings of aging and age-related diseases. Ageing Res Rev 8(1), 1830.10.1016/j.arr.2008.07.002CrossRefGoogle ScholarPubMed
Darmady, EM, Offer, J & Woodhouse, MA (1973). The parameters of the ageing kidney. J Pathol 109(3), 195207.10.1002/path.1711090304CrossRefGoogle ScholarPubMed
Denic, A, Glassock, RJ & Rule, AD (2016). Structural and functional changes with the aging kidney. Adv Chronic Kidney Dis 23(1), 1928.10.1053/j.ackd.2015.08.004CrossRefGoogle ScholarPubMed
Ebert, N, Jakob, O, Gaedeke, J, van der Giet, M, Kuhlmann, MK, Martus, P, Mielke, N, Schuchardt, M, Tölle, M, Wenning, V & Schaeffner, ES (2017). Prevalence of reduced kidney function and albuminuria in older adults: The Berlin Initiative Study. Nephrol Dial Transplant 32(6), 9971005.Google ScholarPubMed
Eckardt, KU, Ratcliffe, PJ, Tan, CC, Bauer, C & Kurtz, A (1992). Age-dependent expression of the erythropoietin gene in rat liver and kidneys. J Clin Invest 89(3), 753760.10.1172/JCI115652CrossRefGoogle ScholarPubMed
Fan, H, Yang, HC, You, L, Wang, YY, He, WJ & Hao, CM (2013). The histone deacetylase, SIRT1, contributes to the resistance of young mice to ischemia/reperfusion-induced acute kidney injury. Kidney Int 83(3), 404413.10.1038/ki.2012.394CrossRefGoogle ScholarPubMed
Geng, Y, Lin, HT, Chen, W, Liu, ZC, Xiang, W & Chen, WR (2015). Age-related reduction in calbindin-D28K expression in the Sprague-Dawley rat lens. Mol Med Rep 11(1), 422426.10.3892/mmr.2014.2672CrossRefGoogle ScholarPubMed
Gibson-Corley, KN, Olivier, AK & Meyerholz, DK (2013). Principles for valid histopathologic scoring in research. Vet Pathol 50(6), 10071015.10.1177/0300985813485099CrossRefGoogle ScholarPubMed
Glassock, RJ & Rule, AD (2012). The implications of anatomical and functional changes of the aging kidney: With an emphasis on the glomeruli. Kidney Int 82(3), 270277.10.1038/ki.2012.65CrossRefGoogle ScholarPubMed
Grantham, JJ (2012). Solitary renal cysts: Worth a second look? Am J Kidney Dis 59(5), 593594.10.1053/j.ajkd.2012.02.002CrossRefGoogle Scholar
Griffin, SV, Petermann, AT, Durvasula, RV & Shankland, SJ (2003). Podocyte proliferation and differentiation in glomerular disease: Role of cell-cycle regulatory proteins. Nephrol Dial Transplant 18(Suppl 6), vi8v13.10.1093/ndt/gfg1069CrossRefGoogle ScholarPubMed
Grosjean, F, Vlassara, H & Striker, GE (2011). Aging kidney: Modern perspectives for an “old” problem. Aging Health 7(5), 737748.10.2217/ahe.11.63CrossRefGoogle Scholar
Hartleben, B, Gödel, M, Meyer-Schwesinger, C, Liu, S, Ulrich, T, Köbler, S, Wiech, T, Grahammer, F, Arnold, SJ, Lindenmeyer, MT, Cohen, CD, Pavenstädt, H, Kerjaschki, D, Mizushima, N, Shaw, AS, Walz, G & Huber, TB (2010). Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 120(4), 10841096.10.1172/JCI39492CrossRefGoogle ScholarPubMed
Hasegawa, K, Wakino, S, Simic, P, Sakamaki, Y, Minakuchi, H, Fujimura, K, Hosoya, K, Komatsu, M, Kaneko, Y, Kanda, T, Kubota, E, Tokuyama, H, Hayashi, K, Guarente, L & Itoh, H (2013). Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing claudin-1 overexpression in podocytes. Nat Med 19(11), 14961504.10.1038/nm.3363CrossRefGoogle ScholarPubMed
Jeng, KS, Chang, CF & Lin, SS (2020). Sonic hedgehog signaling in organogenesis, tumors, and tumor microenvironments. Int J Mol Sci 21, 3.10.3390/ijms21030758CrossRefGoogle ScholarPubMed
Jenq, W, Mathieson, IM, Ihara, W & Ramirez, G (1998). Aquaporin-1: An osmoinducible water channel in cultured mIMCD-3 cells. Biochem Biophys Res Commun 245(3), 804809.10.1006/bbrc.1998.8518CrossRefGoogle ScholarPubMed
Kabiraj, A, Gupta, J, Khaitan, T & Bhattacharya, PT (2015). Principle and techniques of immunohistochemistry—A review. Int J Biol Med Res 6(3), 52045210.Google Scholar
Kaverina, NV, Eng, DG, Miner, JH, Pippin, JW & Shankland, SJ (2020). Parietal epithelial cell differentiation to a podocyte fate in the aged mouse kidney. Aging (Albany, NY) 12(17), 1760117624.10.18632/aging.103788CrossRefGoogle ScholarPubMed
Kong, JH, Siebold, C & Rohatgi, R (2019). Biochemical mechanisms of vertebrate hedgehog signaling. Development 146, 10.10.1242/dev.166892CrossRefGoogle ScholarPubMed
Kriz, W (2002). Podocyte is the major culprit accounting for the progression of chronic renal disease. Microsc Res Tech 57(4), 189195.10.1002/jemt.10072CrossRefGoogle ScholarPubMed
Kroemer, G, Mariño, G & Levine, B (2010). Autophagy and the integrated stress response. Mol Cell 40(2), 280293.10.1016/j.molcel.2010.09.023CrossRefGoogle ScholarPubMed
Kume, S, Uzu, T, Maegawa, H & Koya, D (2012). Autophagy: A novel therapeutic target for kidney diseases. Clin Exp Nephrol 16(6), 827832.10.1007/s10157-012-0695-2CrossRefGoogle ScholarPubMed
Lafyatis, R & Marshak-Rothstein, A (2007). Toll-like receptors and innate immune responses in systemic lupus erythematosus. Arthritis Res Ther 9(6), 222.10.1186/ar2321CrossRefGoogle ScholarPubMed
Lenoir, O, Tharaux, PL & Huber, TB (2016). Autophagy in kidney disease and aging: Lessons from rodent models. Kidney Int 90(5), 950964.10.1016/j.kint.2016.04.014CrossRefGoogle ScholarPubMed
Lewis, WH Jr & Alving, AS (1938). Changes with age in the renal function in adult men: I. Clearance of urea. II. Amount of urea nitrogen in the blood. III. Concentrating ability of the kidneys. Am J Physiol Legacy Content 123(2), 500515.10.1152/ajplegacy.1938.123.2.500CrossRefGoogle Scholar
Liu, X, Ding, C, Tan, W & Zhang, A (2020). Medulloblastoma: Molecular understanding, treatment evolution, and new developments. Pharmacol Ther 210, 107516.10.1016/j.pharmthera.2020.107516CrossRefGoogle ScholarPubMed
Livak, KJ & Schmittgen, TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25(4), 402.10.1006/meth.2001.1262CrossRefGoogle Scholar
Martin, J & Sheaff, M (2007). Renal ageing. J Pathol 211(2), 198205.10.1002/path.2111CrossRefGoogle ScholarPubMed
Matsuzaki, T, Suzuki, T & Takata, K (2001). Hypertonicity-induced expression of aquaporin 3 in MDCK cells. Am J Physiol Cell Physiol 281(1), C55C63.10.1152/ajpcell.2001.281.1.C55CrossRefGoogle ScholarPubMed
Maunsbach, AB, Marples, D, Chin, E, Ning, G, Bondy, C, Agre, P & Nielsen, S (1997). Aquaporin-1 water channel expression in human kidney. J Am Soc Nephrol 8(1), 114.10.1681/ASN.V811CrossRefGoogle ScholarPubMed
Mei, C & Zheng, F (2009). Chronic inflammation potentiates kidney aging. Semin Nephrol 29(6), 555568.10.1016/j.semnephrol.2009.07.002CrossRefGoogle ScholarPubMed
Mizushima, N, Yamamoto, A, Matsui, M, Yoshimori, T & Ohsumi, Y (2004). In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15(3), 11011111.CrossRefGoogle ScholarPubMed
National Kidney Foundation (NKF) (2002). K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am J Kidney Dis 39(2 Suppl 1), S1266.Google Scholar
Nielsen, S, Frøkiaer, J, Marples, D, Kwon, TH, Agre, P & Knepper, MA (2002). Aquaporins in the kidney: From molecules to medicine. Physiol Rev 82(1), 205244.10.1152/physrev.00024.2001CrossRefGoogle ScholarPubMed
O'Sullivan, ED, Hughes, J & Ferenbach, DA (2017). Renal aging: Causes and consequences. J Am Soc Nephrol 28(2), 407420.CrossRefGoogle ScholarPubMed
Rodríguez-Castro, EM & Córdova, HR (2011). Aging and the kidney. Bol Asoc Med P R 103(3), 5762.Google ScholarPubMed
Rule, AD, Semret, MH, Amer, H, Cornell, LD, Taler, SJ, Lieske, JC, Melton, LJ 3rd, Stegall, MD, Textor, SC, Kremers, WK & Lerman, LO (2011). Association of kidney function and metabolic risk factors with density of glomeruli on renal biopsy samples from living donors. Mayo Clin Proc 86(4), 282290.10.4065/mcp.2010.0821CrossRefGoogle ScholarPubMed
Salminen, A, Huuskonen, J, Ojala, J, Kauppinen, A, Kaarniranta, K & Suuronen, T (2008). Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 7(2), 83105.CrossRefGoogle ScholarPubMed
Schmidt-Nielsen, B (1964). Organ systems in adaptation: The excretory system. In Handbook of Physiology, Dell, DB, Adolf, EF & Wilber, CG (Eds.), pp. 124220. Washington, USA: American Physiological Society.Google Scholar
Shpilka, T, Welter, E, Borovsky, N, Amar, N, Mari, M, Reggiori, F & Elazar, Z (2015). Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J 34(16), 21172131.10.15252/embj.201490315CrossRefGoogle ScholarPubMed
Smith, KD (2009). Toll-like receptors in kidney disease. Curr Opin Nephrol Hypertens 18(3), 189196.10.1097/MNH.0b013e32832a1d5fCrossRefGoogle ScholarPubMed
Sung, B, Park, S, Yu, BP & Chung, HY (2004). Modulation of PPAR in aging, inflammation, and calorie restriction. J Gerontol A Biol Sci Med Sci 59(10), 9971006.CrossRefGoogle ScholarPubMed
Tang, S, Leung, JC, Lam, CW, Lai, FM, Chan, TM & Lai, KN (2001). In vitro studies of aquaporins 1 and 3 expression in cultured human proximal tubular cells: Upregulation by transferrin but not albumin. Am J Kidney Dis 38(2), 317330.CrossRefGoogle Scholar
Timurkaan, S & Tarakci, B (2004). Immunohistochemical determination of calbindin D28k in the kidney of postnatal rats. Vet Med 49(9), 334338.CrossRefGoogle Scholar
Vis, AN, Kranse, R, Nigg, AL & van der Kwast, TH (2000). Quantitative analysis of the decay of immunoreactivity in stored prostate needle biopsy sections. Am J Clin Pathol 113(3), 369373.CrossRefGoogle ScholarPubMed
Wakino, S, Hasegawa, K & Itoh, H (2015). Sirtuin and metabolic kidney disease. Kidney Int 88(4), 691698.CrossRefGoogle ScholarPubMed
Wang, X, Vrtiska, TJ, Avula, RT, Walters, LR, Chakkera, HA, Kremers, WK, Lerman, LO & Rule, AD (2014). Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int 85(3), 677685.CrossRefGoogle ScholarPubMed
Wiggins, JE (2012). Aging in the glomerulus. J Gerontol A Biol Sci Med Sci 67(12), 13581364.10.1093/gerona/gls157CrossRefGoogle ScholarPubMed
Xi, Y, Shao, F, Bai, XY, Cai, G, Lv, Y & Chen, X (2014). Changes in the expression of the toll-like receptor system in the aging rat kidneys. PLoS ONE 9(5), e96351.CrossRefGoogle ScholarPubMed