Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-07T09:30:13.780Z Has data issue: false hasContentIssue false

Advanced Image Acquisition and Analytical Techniques for Studies of Living Cells and Tissue Sections

Published online by Cambridge University Press:  23 February 2016

Michal Franek
Affiliation:
Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
Jana Suchánková
Affiliation:
Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
Petra Sehnalová
Affiliation:
Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
Jana Krejčí
Affiliation:
Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
Soňa Legartová
Affiliation:
Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
Stanislav Kozubek
Affiliation:
Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
Eva Bártová*
Affiliation:
Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
*
*Corresponding author. [email protected]
Get access

Abstract

Studies on fixed samples or genome-wide analyses of nuclear processes are useful for generating snapshots of a cell population at a particular time point. However, these experimental approaches do not provide information at the single-cell level. Genome-wide studies cannot assess variability between individual cells that are cultured in vitro or originate from different pathological stages. Immunohistochemistry and immunofluorescence are fundamental experimental approaches in clinical laboratories and are also widely used in basic research. However, the fixation procedure may generate artifacts and prevents monitoring of the dynamics of nuclear processes. Therefore, live-cell imaging is critical for studying the kinetics of basic nuclear events, such as DNA replication, transcription, splicing, and DNA repair. This review is focused on the advanced microscopy analyses of the cells, with a particular focus on live cells. We note some methodological innovations and new options for microscope systems that can also be used to study tissue sections. Cornerstone methods for the biophysical research of living cells, such as fluorescence recovery after photobleaching and fluorescence resonance energy transfer, are also discussed, as are studies on the effects of radiation at the individual cellular level.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, V., Nienhaus, K., Bourgeois, D. & Nienhaus, G.U. (2009). Structural basis of enhanced photoconversion yield in green fluorescent protein-like protein Dendra2. Biochemistry 48(22), 49054915.Google Scholar
Agard, D.A. & Sedat, J.W. (1983). Three-dimensional architercture of a polytene nucleus. Nature 302(5910), 676681.Google Scholar
Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. (2002). An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99(20), 1265112656.Google Scholar
Bailey, B., Farkas, D.L., Taylor, D.L. & Lanni, F. (1993). Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366(6450), 4448.Google Scholar
Bártová, E., Foltánková, V., Legartová, S., Sehnalová, P., Sorokin, D.V., Suchánková, J. & Kozubek, S. (2014). Coilin is rapidly recruited to UVA-induced DNA lesions and gamma-radiation affects localized movement of Cajal bodies. Nucleus 5(3), 460468.Google Scholar
Bártová, E., Kozubek, S., Gajová, H., Jirsová, P., Žlůvová, J., Taslerová, R., Koutná, I. & Kozubek, M. (2003). Cytogenetics and cytology of retinoblastomas. J Cancer Res Clin Oncol 129(2), 8999.CrossRefGoogle ScholarPubMed
Bártová, E., Pacherník, J., Harničarová, A., Kovařík, A., Kovaříková, M., Hofmanová, J., Sklaníková, M., Kozubek, M. & Kozubek, S. (2005). Nuclear levels and patterns of histone H3 modification and HP1 proteins after inhibition of histone deacetylases. J Cell Sci 118(21), 50355046.Google Scholar
Bartová, E., Šustáčková, G., Stixová, L., Kozubek, S., Legartová, S. & Foltánková, V. (2011). Recruitment of Oct4 protein to UV-damaged chromatin in embryonic stem cells. PLoS One 6(12), e27281.Google Scholar
Bates, M., Huang, B. & Zhuang, X. (2008). Super-resolution imaging by nanoscale localization of photo-switching fluorescent probes. Curr Opin Chem Biol 12, 505514.CrossRefGoogle Scholar
Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J. & Hess, H.F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 16421645.Google Scholar
Bohrlinghaus, R.T., Birk, H. & Schreiber, F. (2015). Sensors and measuring techniques in confocal microscopy. Technological readings. Available at http://www.leica-microsystems.com.Google Scholar
Bornfleth, H., Sätzler, K., Eils, R. & Cremer, C. (1998). High precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy. J Microsc 189, 118136.Google Scholar
Cadet, J., Mouret, S., Ravanat, J. & Douki, T. (2012). Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem Photobiol 88(5), 10481065.Google Scholar
Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A. & Tsien, R.Y. (2002). A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99(12), 78777882.CrossRefGoogle ScholarPubMed
Chen, J., Zhang, Z., , Li, Chen, L., Revyakin, B.C., Hajj, A., Legant, B., Dahan, W., Lionnet, M., Betzig, T., Tjian, E., , R. & Liu, Z. (2014). Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156(6), 12741285.Google Scholar
Chudakov, D.M., Lukyanov, S. & Lukyanov, K.A. (2007). Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat Protoc 2(8), 20242032.Google Scholar
Cooke, M.S., Evans, M.D., Dizdaroglu, M. & Lunec, J. (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10), 11951214.Google Scholar
Cremer, C. & Cremer, T. (1978). Considerations on a laser-scanning-microscope with high resolution and depth of field. Microsc Acta 81(1), 3144.Google ScholarPubMed
Cremer, C. & Cremer, T. (1986). Induction of chromosome shattering by ultraviolet light and caffeine: The influence of different distributions of photolesions. Mutat Res 163(1), 3340.Google Scholar
Cremer, C., Edelmann, P., Bornfleth, H., Kreth, G., Muench, H., Luz, H. & Hausmann, M. (1999). Principles of spectral precision distance confocal microscopy for the analysis of molecular nuclear structure. Handbook Comp Vis Appl 3, 839857.Google Scholar
Cremer, C., Münkel, C., Granzow, M., Jauch, A., Dietzel, S., Eils, R., Guan, X.Y., Meltzer, P.S., Trent, J.M., Langowski, J. & Cremer, T. (1996). Nuclear architecture and the induction of chromosomal aberrations. Mutat Res 366(2), 97116.Google Scholar
Cremer, T., Kolbeck, C., Lovelock, K.R., Paape, N., Wölfel, R., Schulz, P.S., Wasserscheid, P., Weber, H., Thar, J., Kirchner, B., Maier, F. & Steinrück, H.P. (2010). Towards a molecular understanding of cation-anion interactions – Probing the electronic structure of imidazolium ionic liquids by NMR spectroscopy, X-ray photoelectron spectroscopy and theoretical calculations. Chemistry 16(30), 90189033.CrossRefGoogle ScholarPubMed
Cvačková, Z., Masata, M., Staněk, D., Fidlerová, H. & Raška, I. (2009). Chromatin position in human HepG2 cells: Although being non-random, significantly changed in daughter cells. J Struct Biol 165(2), 107117.Google Scholar
Dertinger, T., Pallaoro, A., Braun, G., Ly, S., Laurence, T.A. & Weiss, S. (2013). Advances in superresolution optical fluctuation imaging (SOFI). Q Rev Biophys 46(2), 210221.Google Scholar
Dertinger, T., Xu, J., Naini, O.F., Vogel, R. & Weiss, S. (2012). SOFI-based 3D superresolution sectioning with a widefield microscope. Opt Nanoscopy 1(2), 2.Google Scholar
Diekmann, S. & Hoischen, C. (2014). Biomolecular dynamics and binding studies in the living cell. Phys Life Rev 11(1), 130.CrossRefGoogle ScholarPubMed
Essers, J., van Cappellen, W.A., Theil, A.F., van Drunen, E., Jaspers, N.G.J., Hoeijmakers, J.H.J., Wyman, C., Vermeulen, W. & Kanaar, R. (2005). Dynamics of relative chromosome position during the cell cycle. Mol Biol Cell 16(2), 769775.CrossRefGoogle ScholarPubMed
Fitzgibbon, J., Bell, K., King, E. & Oparka, K. (2010). Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy. Plant Physiol 153(4), 14531463.Google Scholar
Foltánková, V., Matula, P., Sorokin, D.V., Kozubek, S. & Bartová, E. (2013). Hybrid detectors improved time-lapse confocal microscopy of PML and 53BP1 nuclear body colocalization in DNA lesions. Microsc Microanal 19(2), 360369.Google Scholar
Frigault, M.M., Lacoste, J., Swift, J.L. & Brown, C.M. (2009). Live-cell microscopy – tips and tools. J Cell Sci 122(6), 753767.Google Scholar
Gabor, K.A., Kim, D., Kim, C.H. & Hess, S.T. (2015). Nanoscale imaging of caveolin-1 membrane domains in vivo. PLoS One 10(2), e0117225.Google Scholar
Gallina, M.E., Xu, J., Dertinger, T., Aizer, A., Shav-Tal, Y. & Weiss, S. (2013). Resolving the spatial relationship between intracellular components by dual color super resolution optical fluctuations imaging (SOFI). Opt Nanoscopy 2, 114.CrossRefGoogle ScholarPubMed
Gottfert, F., Wurm, C.A., Mueller, V., Berning, S., Cordes, V.C., Honigmann, A. & Hell, S.W. (2013). Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophys J 105(1), L01L03.Google Scholar
Graf, R., Rietdorf, J. & Zimmerman, T. (2005). Live cell spinning disk microscopy. Adv Biochem Eng Biotechnol 95, 5775.Google Scholar
Greivenkamp, J.E. (2004). Field Guide to Geometrical Optics. Bellingham, WA: SPIE Press.Google Scholar
Gurskaya, N.G., Verkusha, V.V., Shcheglov, A.S., Staroverov, D.B., Chepurnykh, T.V., Fradkov, A.F., Lukyanov, S. & Lukyanov, K.A. (2006). Engineering of a monomeric green-to-red photoactivable fluorescent protein induced by blue light. Nat Biotechnol 24(4), 461465.Google Scholar
Gustafsson, M.G. (2000). Surpassing the lateral resolution limit by the factor of two using structured illumination microscopy. J Microsc 198(2), 8287.Google Scholar
Gustafsson, M.G.L. (2005). Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 102, 1308113086.CrossRefGoogle ScholarPubMed
Gustafsson, M.G.L, Agard, D.A. & Sedat, J.W. (1999). I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J Microsc 195, 1016.CrossRefGoogle ScholarPubMed
Hable, V., Drexler, G.A., Brüning, T., Burgdorf, C., Greubel, C., Derer, A., Seel, J., Strickfaden, H., Cremer, T., Friedl, A.A. & Dollinger, G. (2012). Recruitment kinetics of DNA repair proteins Mdc1 and Rad52 but not 53BP1 depend on damage complexity. PLoS One 7(7), e41943.Google Scholar
Hell, S. & Stelzer, E.H.K. (1992). Properties of a 4Pi confocal fluorescence microscope. J Opt Soc Am A 9, 21592166.Google Scholar
Hell, S.W. & Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11), 780782.Google Scholar
Helmchen, F. & Denk, W. (2005). Deep tissue two-photon microscopy. Nat Methods 2(12), 932940.CrossRefGoogle ScholarPubMed
Hess, S.T., Girirajan, T.P. & Mason, M.D. (2006). Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11), 42584272.Google Scholar
Huber, O., Brunner, A., Maier, P., Kaufmann, R., Couraud, P.O., Cremer, C. & Fricker, G. (2012). Localization microscopy (SPDM) reveals clustered formations of P-glycoprotein in a human blood-brain barrier model. PLoS One 7(9), e44776.Google Scholar
Huisken, J. & Stainier, D.Y.R. (2009). Selective plane illumination microscopy techniques in developmental biology. Development 136(12), 19631975.CrossRefGoogle ScholarPubMed
Jones, S.A., Shim, S., He, J. & Zhuang, X. (2011). Fast three-dimensional super-resolution imaging of live cells. Nat Methods 8(6), 499508.Google Scholar
Krejčí, J., Stixová, L., Pagáčová, E., Legartová, S., Kozubek, S., Lochmanová, G., Zdráhal, Z., Sehnalová, P., Dabravolski, S., Hejátko, J. & Bártová, E. (2015). Post-translational modifications of histones in human sperm. J Cell Biochem 116(10), 21952209.Google Scholar
Lahtz, C., Bates, S.E., Jiang, Y., Li, A.X., Wu, X., Hahn, M.A. & Pfeifer, G.P. (2012). Gamma irradiation does not induce detectable changes in DNA methylation directly following exposure of human cells. PLoS One 7(9), e44858.Google Scholar
Lakowicz, J.R. (2006). Principles of Fluorescence Spectroscopy, 3rd ed. Baltimore: Springer. ISBN 978-0-387-46312-4.Google Scholar
Lemmer, P., Gunkel, M., Weiland, Y., Müller, P., Baddeley, D., Kaufmann, R., Urich, A., Eipel, H., Amberger, R., Hausmann, M. & Cremer, C. (2009). Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range. J Microsc 235(2), 163171.Google Scholar
Levitt, J.A., Matthews, D.R., Ameer-Beg, S.M. & Suhling, K. (2009). Fluorescence lifetime and polarization-resolved imaging in cell biology. Curr Opin Biotechnol 20(1), 2836.Google Scholar
Levy-Sakin, M., Grunwald, A., Kim, S., Gassman, N.R., Gottfried, A., Antelman, J., Kim, Y., Ho, S.O., Samuel, R., Michalet, X., Lin, R.R., Dertinger, T., Kim, A.S., Chung, S., Colyer, R.A., Weinhold, E., Weiss, S. & Ebenstein, Y. (2014). Toward single-molecule optical mapping of the epigenome. ACS Nano 8(1), 1426.Google Scholar
Li, D., Shao, L., Chen, B.C., Zhang, X., Zhang, M., Moses, B., Milkie, D.E., Beach, J.R., Hammer, J.A. 3rd, Pasham, M., Kirchhausen, T., Baird, M.A., Davidson, M.W., Xu, P. & Betzig, E. (2015). ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349(6251), aab3500.Google Scholar
Lidke, K., Rieger, B., Jovin, T. & Heintzmann, R. (2005). Superresolution by localization of quantum dots using blinking statistics. Opt Express 13(18), 70527062.Google Scholar
Liu, Z., Legant, W.R., Chen, B.C., Li, L., Grimm, J.B., Lavis, L.D., Betzig, E. & Tjian, R. (2014). 3D imaging of Sox2 enhancer clusters in embryonic stem cells. Elife 3, e04236.Google Scholar
Luijsterburg, M.S., Dinant, C., Lans, H., Stap, J., Wiernasz, E., Lagerwerf, S., Warmerdam, D.O., Lindh, M., Brink, M.C., Dobrucki, J.W., Aten, J.A., Fousteri, M.I., Jansen, G., Dantuma, N.P., Vermeulen, W., Mullenders, L.H., Houtsmuller, A.B., Verschure, P.J & van Driel, R. (2009). Heterochromatin protein 1 is recruited to various types of DNA damage. J Cell Biol 185(4), 577586.Google Scholar
Magidson, V. & Khodjakov, A. (2013). Circumventing photodamage in live-cell microscopy. Methods Cell Biol 114, 545560.Google Scholar
Munck, S., Miskiewicz, K., Sannerud, R., Menchon, S.A., Jose, L., Heintzmann, R., Verstreken, P. & Annaert, W. (2012). Sub-diffraction imaging on standard microscopes through photobleaching microscopy with non-linear processing. J Cell Sci 125(Pt 9), 22572266.Google Scholar
Nagy, Z. & Soutoglou, E. (2009). DNA repair: Easy to visualize, difficult to elucidate. Trends Cell Biol 19(11), 617629.Google Scholar
Nakano, A. (2002). Spinning-disk confocal microscopy – a cutting-edge tool for imaging of membrane traffic. Cell Struct Funct 27(5), 349355.Google Scholar
Orlova, D.Y., Stixová, L., Kozubek, S., Gierman, H.J., Šustáčková, G., Chernyshev, A.V., Medvedev, R.N., Legartová, S., Versteeg, R., Matula, P., Stoklasa, R. & Bártová, E. (2012). Arrangement of nuclear structures is not transmitted through mitosis but is identical in sister cells. J Cell Biochem 113(11), 33133329.CrossRefGoogle Scholar
Piston, D.W. & Kremers, G.J. (2007). Fluorescent protein FRET: The good, the bad and the ugly. Trends Biochem Sci 32(9), 407414.Google Scholar
Preus, S., Noer, S.L., Hildebrandt, L.L., Gudnason, D. & Birkedal, V. (2015). iSMS: Single-molecule FRET microscopy software. Nat Methods 12(7), 593594.Google Scholar
Reits, E.A. & Neefjes, J.J. (2001). From fixed to FRAP: Measuring protein mobility and activity in living cells. Nat Cell Biol 3(6), 145147.Google Scholar
Rouquette, J., Cremer, C., Cremer, T. & Fakan, S. (2010). Functional nuclear architecture studied by microscopy: Present and future. Int Rev Cell Mol Biol 282, 190.Google Scholar
Schermelleh, L., Carlton, P.M., Sebastian, H., Shao, L., Winoto, L., Kner, P., Burke, B., Cardoso, M.C., Agard, D.A., Gustafsson, M.G.L., Leonhardt, H. & Sedat, J.W. (2008). Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881), 13321336.Google Scholar
Shaner, N.C., Patterson, G.H. & Davidson, M.W. (2007). Advances in fluorescent protein technology. J Cell Sci 120(24), 42474260.Google Scholar
Shcherbo, D., Murphy, C.S., Ermakova, G.V., Solovieva, E.A., Chepurnykh, T.V., Scheglov, A.S., Verkusha, V.V., Pletnev, V.Z., Hazelwood, K.L., Roche, P.M., Lukyanov, S., Zaraisky, A.G., Davidson, M.W. & Chudakov, D.M. (2009). Far-red fluorescent tags for protein imaging in living tissues. Biochem J 418(3), 567574.Google Scholar
Shim, S.H., Xia, C., Zhong, G., Babcock, H.P., Vaughan, J.C., Huang, B., Wang, X., Xu, C., Bi, G.Q. & Zhuang, X. (2012). Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci USA 109(35), 1397813983.Google Scholar
Shimomura, O., Johnson, F.H. & Saiga, Y. (1962). Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan Aequorea. J Cell Comp Physiol 59, 223239.Google Scholar
Sibarita, J.B. (2005). Deconvolution microscopy. Adv Biochem Engin Biotechnol 95, 201243.Google Scholar
Smeets, D., Markaki, Y., Schmid, V.J., Kraus, F., Tattermusch, A., Cerase, A., Sterr, M., Fiedler, S., Demmerle, J., Popken, J., Leonhardt, H., Brockdorff, N., Cremer, T., Schermelleh, L. & Cremer, M. (2014). Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin 7, 8.Google Scholar
Sorokin, D.V., Stixová, L., Sehnalová, P., Legartová, S., Suchánková, J., Šimara, P., Kozubek, S., Matula, P., Skalníková, M., Raška, I. & Bártová, E. (2015). Localized movement and morphology of UBF1-positive nucleolar regions are changed by γ-irradiation in G2 phase of the cell cycle. Nucleus 6(4), 301313.Google Scholar
Sorokin, D.V., Suchánková, J., Bártová, E. & Matula, P. (2014). Visualizing stable features in live cell nucleus for evaluation of the cell global motion compensation. Folia Biol 60(Suppl 1), 4549.Google Scholar
Stixová, L., Hrušková, T., Sehnalová, P., Legartová, S., Svídeňská, S., Kozubek, S. & Bártová, E. (2014 a). Advanced microscopy techniques used for comparison of UVA- and γ-irradiation-induced DNA damage in the cell nucleus and nucleolus. Folia Biol 60(Suppl 1), 7684.Google Scholar
Stixová, L., Matula, P., Kozubek, S., Gombitová, A., Cmarko, D., Raška, I. & Bártová, E. (2012). Trajectories and nuclear arrangement of PML bodies are influenced by A-type lamin defficiency. Biol Cell 104(7), 418432.Google Scholar
Stixová, L., Sehnalová, P., Legartová, S., Suchánková, J., Hrušková, T., Kozubek, S., Sorokin, D.V., Matula, P., Raška, I., Kovařík, A., Fulneček, J. & Bártová, E. (2014 b). HP1β-dependent recruitment of UBF1 to irradiated chromatin occurs simultaneously with CPDs. Epigenetics Chromatin 7(1), 39.Google Scholar
Subach, O.M., Gundorov, I.S., Yoshimura, M., Subach, F.V., Zhang, J., Gruenwald, D., Souslova, E.A., Chudakov, D.M. & Verkusha, V.V. (2008). Conversion of red fluorescent protein into a bright blue probe. Chem Biol 15(10), 11161124.Google Scholar
Suchánková, J., Kozubek, S., Legartová, S., Sehnalová, P., Küntziger, T. & Bártová, E. (2015). Distinct kinetics of DNA repair protein accumulation at DNA lesions and cell cycle-dependent formation of γH2AX- and NBS1-positive repair foci. Biol Cell 107(12), 440454.Google Scholar
Šustáčková, G., Kozubek, S., Stixová, L., Legartová, S., Matula, P., Orlova, D. & Bártová, E. (2012). Acetylation-dependent nuclear arrangement and recruitment of BMI1 protein to UV-damaged chromatin. J Cell Physiol 227(5), 18381850.Google Scholar
Suchánková, J., Legartová, S., Sehnalová, P., Kozubek, S., Valente, S., Labella, D., Mai, A., Eckerich, C., Fackelmayer, F.O., Sorokin, D.V. & Bartová, E. (2014). PRMT1 arginine methyltransferase accumulates in cytoplasmic bodies that respond to selective inhibition and DNA damage. Eur J Histochem 58(2), 2389.Google Scholar
van Munster, E.B., Kremers, G.J., Adjobo-Hermans, M.J. & Gadella, T.W. Jr. (2005). Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. J Microsc 218(3), 253262.Google Scholar
Vaughan, J.C., Dempsey, G.T., Sun, E. & Zhuang, X. (2013). Phosphine quenching of cyanine dyes as a versatile tool for fluorescence microscopy. J Am Chem Soc 135(4), 11971200.Google Scholar
Wang, K., Sun, W., Richie, C.T., Harvey, B.K., Betzig, E. & Ji, N. (2015). Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat Commun 6, 7276.Google Scholar
Wang, S., Moffitt, J.R., Dempsey, G.T., Xie, X.S. & Zhuang, X. (2014). Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging. Proc Natl Acad Sci USA 111(23), 845284527.Google Scholar
Westphal, V., Rizzoli, S.O., Lauterbach, M.A., Kamin, D., Jahn, R. & Hell, S.W. (2008). Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320(5873), 246249.CrossRefGoogle ScholarPubMed
Wiedenmann, J., Ivanchenko, S., Oswald, F., Schmitt, F., Rocker, C., Salih, A., Spindler, K.D. & Nienhaus, G.U. (2004). EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci USA 101(45), 1590515910.Google Scholar
Young, L.W., Darios, E.S. & Watts, S.W. (2015). An immunohistochemical analysis of SERT in the blood-brain barrier of the male rat brain. Histochem Cell Biol 144(4), 321329.Google Scholar
Zorn, C., Cremer, T., Cremer, C. & Zimmer, J. (1976). Laser UV microirradiation of interphase nuclei and post-treatment with caffeine. Hum Genet 35(1), 8389.Google Scholar