Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T00:31:17.914Z Has data issue: false hasContentIssue false

XRMA and ToF-SIMS Analysis of Normal and Hypomineralized Enamel

Published online by Cambridge University Press:  12 February 2015

Lisa Melin
Affiliation:
Department of Pediatric Dentistry, Institute of Odontology at the Sahlgrenska Academy, University of Gothenburg, P.O. Box 450, SE 405 30 Gothenburg, Sweden
Jesper Lundgren
Affiliation:
Department of Psychology, University of Gothenburg, P.O. Box 500, SE 405 30 Gothenburg, Sweden
Per Malmberg
Affiliation:
Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
Jörgen G. Norén*
Affiliation:
Department of Pediatric Dentistry, Institute of Odontology at the Sahlgrenska Academy, University of Gothenburg, P.O. Box 450, SE 405 30 Gothenburg, Sweden
Fabian Taube
Affiliation:
Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, P.O. Box 414, SE 405 30 Gothenburg, Sweden
David H. Cornell
Affiliation:
Department of Earth Sciences, University of Gothenburg, P.O. Box 460, SE 405 30 Gothenburg, Sweden
*
*Corresponding author. [email protected]
Get access

Abstract

Molar incisor hypomineralization (MIH) is a developmental disturbance of the enamel. This study presents analyses of hypomineralized and normal enamel in first molar teeth diagnosed with MIH, utilizing time-of-flight secondary ion mass spectrometry area analyses and X-ray microanalysis of area and spot profiles in uncoated samples between gold lines which provide electrical conductivity. Statistical analysis of mean values allows discrimination of normal from MIH enamel, which has higher Mg and lower Na and P. Inductive analysis using complete data sets for profiles from the enamel surface to the enamel–dentin junction found that Mg, Cl and position in the profile provide useful discrimination criteria. Element profiles provide a visual complement to the inductive analysis and several elements also provide insight into the development of both normal and MIH enamel. The higher Mg content and different Cl profiles of hypomineralized enamel compared with normal enamel are probably related to a relatively short period during the development of ameloblasts between birth and the 1st year of life.

Type
Biological Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alaluusua, S. (2010). Aetiology of molar-incisor hypomineralization: A systematic review. Eur Arch Paediatr Dent 11, 5358.Google Scholar
Bronckers, A., Kalogeraki, L., Jorna, H.J., Wilke, M., Bervoets, T.J., Lyaruu, D.M., Zandieh-Doulabi, B., Denbesten, P. & de Jonge, H. (2010). The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in maturation stage ameloblasts, odontoblasts and bone cells. Bone 46, 11881196.Google Scholar
Chan, Y.L., Ngan, A.H. & King, N.M. (2010). Degraded prism sheaths in the transition region of hypomineralized teeth. J Dent 383, 237244.CrossRefGoogle Scholar
Chang, E.H., Lacruz, R.S., Bromage, T.G., Bringas, P. Jr., Welsh, M.J., Zabner, J. & Paine, M.L. (2011). Enamel pathology resulting from loss of function in the cystic fibrosis transmembrane conductance regulator in a porcine animal model. Cells Tissues Organs 194, 249254.Google Scholar
Crombie, F., Manton, D. & Kilpatrick, N. (2009). Aetiology of molar-incisor hypomineralization: A critical review. Int J Paediatr Dent 19, 7383.Google Scholar
Crombie, F.A., Manton, D.J., Palamara, J.E., Zalizniak, I., Cochrane, N.J. & Reynolds, E.C. (2013). Characterisation of developmentally hypomineralized human enamel. J Dent 41, 611618.Google Scholar
da Costa-Silva, C.M., Ambrosano, G.M., Jeremias, F., De Souza, J.F. & Mialhe, F.L. (2011). Increase in severity of molar-incisor hypomineralization and its relationship with the colour of enamel opacity: A prospective cohort study. Int J Paediatr Dent 21, 333341.Google Scholar
Driessens, F.C. & Verbeeck, R.M. (1985). Dolomite as a possible magnesium-containing phase in human tooth enamel. Calcif Tissue Int 37, 376380.Google Scholar
Driessens, F.C. & Verbeeck, R.M.H. (1982). The probable phase composition of the mineral in sound enamel and dentine. Bull Soc Chim Belg 91, 573596.Google Scholar
Dykes, E. & Elliott, J.C. (1971). The occurrence of chloride ions in the apatite lattice of Holly Springs hydroxyapatite and dental enamel. Calcif Tissue Res 7, 241248.Google Scholar
Elfrink, M.E., ten Cate, J.M., Jaddoe, V.W., Hofman, A., Moll, H.A. & Veerkamp, J.S. (2012). Deciduous molar hypomineralization and molar incisor hypomineralization. J Dent Res 91, 551555.Google Scholar
Elliot, J.C. (1977). Structure, crystal chemistry and density of enamel apatites. Ciba Found Symp 205, 5472.Google Scholar
Fagrell, T. (2011). Molar incisor hypomineralization. Morphological and chemical aspects, onset and possible etiological factors. Swed Dent J Suppl 5, 1183.Google Scholar
Fagrell, T.G., Dietz, W., Jälevik, B. & Norén, J.G. (2010). Chemical, mechanical and morphological properties of hypomineralized enamel of permanent first molars. Acta Odontol Scand 68, 215222.Google Scholar
Fagrell, T.G., Salmon, P., Melin, L. & Norén, J.G. (2013). Onset of molar incisor hypomineralization (MIH). Morphological and chemical aspects, onset and possible etiological factors. Swed Dent J 37, 6170.Google Scholar
Farah, R.A., Monk, B.C., Swain, M.V. & Drummond, B.K. (2010a). Protein content of molar-incisor hypomineralization enamel. J Dent 38, 591596.Google Scholar
Farah, R.A., Swain, M.V., Drummond, B.K., Cook, R. & Atieh, M. (2010b). Mineral density of hypomineralized enamel. J Dent 38, 5058.Google Scholar
FDI (1992). A review of the developmental defects of enamel index (DDE Index). Commission on Oral Health, Research & Epidemiology. Report of an FDI Working Group. Int Dent J 42, 411426.Google Scholar
Fearne, J., Anderson, P. & Davis, G.R. (2004). 3D X-ray microscopic study of the extent of variations in enamel density in first permanent molars with idiopathic enamel hypomineralization. Br Dent J 196, 634638.Google Scholar
Ferrazzano, G.F., Sangianantoni, G., Cantile, T., Amato, I., Orlando, S. & Ingenito, A. (2012). Dental enamel defects in Italian children with cystic fibrosis: An observational study. Community Dent Health 29, 106109.Google Scholar
Garnett, J. & Dieppe, P. (1990). The effects of serum and human albumin on calcium hydroxyapatite crystal growth. Biochem J 266, 863868.Google Scholar
Gómez-García, I., Oyenarte, I. & Martínez-Cruz, L.A. (2011). Purification, crystallization and preliminary crystallographic analysis of the CBS pair of the human metal transporter CNNM4. Acta Crystallograph Sect F Struct Biol Cryst Commun 67, 349353.CrossRefGoogle ScholarPubMed
Gómez-García, I., Stuiver, M., Ereño, J., Oyenarte, I., Corral-Rodríguez, M.A., Müller, D. & Martínez-Cruz, L.A. (2012). Purification, crystallization and preliminary crystallographic analysis of the CBS-domain pair of cyclin M2 (CNNM2). Acta Crystallograph Sect F Struct Biol Cryst Commun 68, 11981203.Google Scholar
Gotierrez-Salazar, M.P. & Reyes-Gasga, J. (2003). Microhardness and chemical composition of human tooth. Mat Res 6, 367373.CrossRefGoogle Scholar
Hu, J.C., Chun, Y.H., Al Hazzazzi, T. & Simmer, J.P. (2007). Enamel formation and amelogenesis imperfecta. Cells Tissues Organs 186, 7885.Google Scholar
Jälevik, B. (2010). Prevalence and diagnosis of molar-incisor-hypomineralization (MIH): A systematic review. Eur Arch Paediatr Dent 11, 5964.Google Scholar
Jälevik, B. & Klingberg, G.A. (2002). Dental treatment, dental fear and behaviour management problems in children with severe enamel hypomineralization of their permanent first molars. Int J Paediatr Dent 12, 2432.Google Scholar
Jälevik, B. & Norén, J.G. (2000). Enamel hypomineralization of permanent first molars: A morphological study and survey of possible aetiological factors. Int J Paediatr Dent 10, 278289.Google Scholar
Jälevik, B., Norén, J.G., Klingberg, G. & Barregård, L. (2001a). Etiologic factors influencing the prevalence of demarcated opacities in permanent first molars in a group of Swedish children. Eur J Oral Sci 109, 230234.Google Scholar
Jälevik, B., Odelius, H., Dietz, W. & Norén, J. (2001b). Secondary ion mass spectrometry and X-ray microanalysis of hypomineralized enamel in human permanent first molars. Arch Oral Biol 46, 239247.CrossRefGoogle ScholarPubMed
Jedeon, K., De la Dure-Molla, M., Brookes, S.J., Loiodice, S., Marciano, C., Kirkham, J., Canivenc-Lavier, M.C., Boudalia, S., Bergès, R., Harada, H., Berdal, A. & Babajko, S. (2013). Enamel defects reflect perinatal exposure to bisphenol A. Am J Pathol 183, 108118.Google Scholar
Jeremias, F., Koruyucu, M., Küchler, E.C., Bayram, M., Tuna, E.B., Deeley, K., Pierri, R.A., Souza, J.F., Fragelli, C.M., Paschoal, M.A., Gencay, K., Seymen, F., Caminaga, R.M., dos Santos-Pinto, L. & Vieira, A.R. (2013). Genes expressed in dental enamel development are associated with molar-incisor hypomineralization. Arch Oral Biol 58, 14341442.Google Scholar
Josephsen, K., Takano, Y., Frische, S., Praetorius, J., Nielsen, S., Aoba, T. & Fejerskov, O. (2010). Ion transporters in secretory and cyclically modulating ameloblasts: A new hypothesis for cellular control of preeruptive enamel maturation. Am J Physiol Cell Physiol 299, C1299C1307.Google Scholar
Koch, G., Thesleff, I. & Kreiborg, S. (2009). Tooth development and disturbances in number and shape of teeth. In Pediatric Dentistry—A Clinical Approach, Koch, G. & Poulsen, S. (Eds.), 2nd ed. United Kingdom: Wiley-Blackwell, 183196.Google Scholar
Lacruz, R.S., Nanci, A., Kurtz, I., Wright, J.T. & Paine, M.L. (2010). Regulation of pH during amelogenesis. Calcif Tissue Int 86, 91103.Google Scholar
Lacruz, R.S., Smith, C.E., Moffatt, P., Chang, E.H., Bromage, T.G., Bringas, P. Jr., Nanci, A., Baniwal, S.K., Zabner, J., Welsh, M.J., Kurtz, I. & Paine, M.L. (2012). Requirements for ion and solute transport, and pH regulation during enamel maturation. J Cell Physiol 227, 17761785.Google Scholar
LeGeros, R.Z., Kijkowska, R., Bautista, C. & LeGeros, J.P. (1995). Synergistic effects of magnesium and carbonate on properties of biological and synthetic apatites. Connect Tissue Res 33, 203209.CrossRefGoogle ScholarPubMed
LeGeros, R.Z., Sakae, T., Bautista, C., Retino, M. & LeGeros, J.P. (1996). Magnesium and carbonate in enamel and synthetic apatites. Adv Dent Res 10, 225231.Google Scholar
Lou, L., Nelson, A.E., Heo, G. & Major, P.W. (2008). Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS). Appl Surf Sci 254, 67066709.CrossRefGoogle Scholar
Mahoney, E., Ismail, F.S., Kilpatrick, N. & Swain, M. (2004a). Mechanical properties across hypomineralized/hypoplastic enamel of first permanent molar teeth. Eur J Oral Sci 112, 497502.Google Scholar
Mahoney, E.K., Rohanizadeh, R., Ismail, F.S., Kilpatrick, N.M. & Swain, M.V. (2004b). Mechanical properties and microstructure of hypomineralized enamel of permanent teeth. Biomaterials 25, 50915100.Google Scholar
Malmberg, P., Bexell, U., Eriksson, C., Nygren, H. & Richter, K. (2007). Analysis of bone minerals by time-of-flight secondary ion mass spectrometry: A comparative study using monoatomic and cluster ions sources. Rapid Commun Mass Spectrom 21, 745749.Google Scholar
Mangum, J.E., Crombie, F.A., Kilpatrick, N., Manton, D.J. & Hubbard, M.J. (2010). Surface integrity governs the proteome of hypomineralized enamel. J Dent Res 89, 11601165.Google Scholar
Mayer, I., Schlam, R. & Featherstone, J.D. (1997). Magnesium-containing carbonate apatites. J Inorg Biochem 66, 16.CrossRefGoogle ScholarPubMed
Melin, L., Norén, J.G., Taube, F. & Cornell, D.H. (2014). Evaluation of X-ray microanalysis for characterization of dental enamel. Microsc Microanal 20, 257267.Google Scholar
Menanteau, J., Gregoire, M., Daculsi, G. & Jans, I. (1987). In vitro albumin binding on apatite crystals from developing enamel. Bone Miner 3, 137141.Google Scholar
Nanci, A. ([2007] 2008). Ten Cate’s Oral Histology: Development, Structure, and Function, 7th ed. St. Louis, MO: Mosby Inc., and affiliate of Elsevier Inc.Google Scholar
Nelson, A.E., Hildebrand, N.K.S. & Major, P.W. (2002). Mature Dental Enamel [Calcium Hydroxyapatite, Ca10(PO4)6(OH)2] by XPS. Surf Sci Spectra 9, 250259.Google Scholar
Nilsson, T., Lundgren, T., Odelius, H., Jönsson, U., Sillén, R. & Norén, J.G. (1998). Differences in co-variation of inorganic elements in the bulk and surface of human deciduous enamel: An induction analysis study. Connect Tissue Res 38, 8189.Google Scholar
Parry, D.A., Mighell, A.J., El-Sayed, W., Shore, R.C., Jalili, I.K., Dollfus, H., Bloch-Zupan, A., Carlos, R., Carr, I.M., Downey, L.M., Blain, K.M., Mansfield, D.C., Shahrabi, M., Heidari, M., Aref, P., Abbasi, M., Michaelides, M., Moore, A.T., Kirkham, J. & Inglehearn, C.F. (2009). Mutations in CNNM4 cause Jalili syndrome, consisting of autosomal-recessive cone-rod dystrophy and amelogenesis imperfecta. Am J Hum Genet 84, 266273.CrossRefGoogle ScholarPubMed
Polok, B., Escher, P., Ambresin, A., Chouery, E., Bolay, S., Meunier, I., Nan, F., Hamel, C., Munier, F.L., Thilo, B., Mégarbané, A. & Schorderet, D.F. (2009). Mutations in CNNM4 cause recessive cone-rod dystrophy with amelogenesis imperfecta. Am J Hum Genet 84, 259265.Google Scholar
Posner, A.S. (1996). The effect of fluoride on bone mineralization. In Fluoride in Dentistry, Fejerskov O., Ekstrand J. & Burt B.A. (Eds.), pp. 8895. Copenhagen: Munksgaard.Google Scholar
Poulsen, S., Gjørup, H., Haubek, D., Haukali, G., Hintze, H., Løvschall, H. & Errboe, M. (2008). Amelogenesis imperfecta—A systematic literature review of associated dental and oro-facial abnormalities and their impact on patients. Acta Odontol Scand 66, 193199.Google Scholar
Retief, D.H., Cleaton-Jones, P.E. & Turkstra, J. (1970). The quantitative determination of Ca, Na, Al, Mg, and Cl in normal enamel and dentin by neutron activation and high resolution gamma spectrometry. J Dent Assoc S Afr 25, 188192.Google ScholarPubMed
Retief, D.H., Cleaton-Jones, P.E., Turkstra, J. & De Wet, W.J. (1971). The quantitative analysis of sixteen elements in normal human enamel and dentine by neutron activation analysis and high-resolution gamma-spectrometry. Arch Oral Biol 16, 12571267.Google Scholar
Robinson, C., Hallsworth, A.S. & Kirkham, J. (1984). Distribution and uptake of magnesium by developing deciduous bovine incisor enamel. Arch Oral Biol 29, 479482.Google Scholar
Robinson, C., Kirkham, J., Brookes, S.J., Bonass, W.A. & Shore, R.C. (1995). The chemistry of enamel development. Int J Dev Biol 39, 145152.Google Scholar
Robinson, C., Kirkham, J., Brookes, S.J. & Shore, R.C. (1992). The role of albumin in developing rodent dental enamel: A possible explanation for white spot hypoplasia. J Dent Res 71, 12701274.Google Scholar
Robinson, C., Weatherell, J.A. & Hallsworth, A.S. (1981). Distribution of magnesium in mature human enamel. Caries Res 15, 7077.Google Scholar
Rüfenacht, H.S. & Fleisch, H. (1984). Measurement of inhibitors of calcium phosphate precipitation in plasma ultrafiltrate. Am J Physiol 246, 648655.Google Scholar
Sabel, N., Dietz, W., Lundgren, T., Nietzsche, S., Odelius, H., Rythén, M., Rizell, S., Robertson, A., Norén, J.G. & Klingberg, G. (2009a). Elemental composition of normal primary tooth enamel analyzed with XRMA and SIMS. Swed Dent J 33, 7583.Google Scholar
Sabel, N., Klingberg, G., Nietzsche, S., Robertson, A., Odelius, H. & Norén, J.G. (2009b). Analysis of some elements in primary enamel during postnatal mineralization. Swed Dent J 33, 8595.Google Scholar
Sabel, N., Robertson, A., Nietzsche, S. & Norén, J.G. (2012). Demineralization of enamel in primary second molars related to properties of the enamel. Sci World J 2012, 587254.CrossRefGoogle ScholarPubMed
Sasaki, T., Debari, K. & Higashi, S. (1984). Energy-dispersive X-ray microanalysis and scanning electron microscopy of developing and mature cat enamel. Arch Oral Biol 29, 431436.Google Scholar
Shaw, J.H. & Yen, P.K. (1972). Sodium, potassium, and magnesium concentrations in the enamel and dentin of human and rhesus monkey teeth. J Dent Res 51, 95101.Google Scholar
Simmer, J.P. & Fincham, A.G. (1995). Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med 6, 84108.Google Scholar
Simmer, J.P., Papagerakis, P., Smith, C.E., Fisher, D.C., Rountrey, A.N., Zheng, L. & Hu, J.C. (2010). Regulation of dental enamel shape and hardness. J Dent Res 89, 10241038.Google Scholar
Smith, C.E. (1998). Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med 9, 128161.CrossRefGoogle ScholarPubMed
Spencer, P., Barnes, C., Martini, J., Garcia, R., Elliott, C. & Doremus, R. (1989). Incorporation of magnesium into rat dental enamel and its influence on crystallization. Arch Oral Biol 34, 767771.Google Scholar
Srot, V., Bussmann, B., Salzberger, U., Koch, C.T. & van Aken, P.A. (2012). Linking microstructure and nanochemistry in human dental tissues. Microsc Microanal 18, 509523.Google Scholar
Steinfort, J., Driessens, F.C., Heijligers, H.J. & Beertsen, W. (1991). The distribution of magnesium in developing rat incisor dentin. J Dent Res 70, 187191.Google Scholar
Suga, S. (1989). Enamel hypomineralization viewed from the pattern of progressive mineralization of human and monkey developing enamel. Adv Dent Res 3, 188198.Google Scholar
Sydney-Zax, M., Mayer, I. & Deutsch, D. (1991). Carbonate content in developing human and bovine enamel. J Dent Res 70, 913916.Google Scholar
Terpstra, R.A. & Driessens, F.C. (1986). Magnesium in tooth enamel and synthetic apatites. Calcif Tissue Int 39, 348354.Google Scholar
Weatherell, J.A. (1975). Composition of dental enamel. Br Med Bull 31, 115119.Google Scholar
Weatherell, J.A., Robinson, C. & Hallsworth, A.S. (1974). Variations in the chemical composition of human enamel. J Dent Res 53, 180192.Google Scholar
Weerheijm, K.L. (2004). Molar incisor hypomineralization (MIH): Clinical presentation, aetiology and management. Dent Update 31, 912.Google Scholar
Willmott, N.S., Bryan, R.A. & Duggal, M.S. (2008). Molar-incisor-hypomineralization: A literature review. Eur Arch Paediatr Dent 9, 172179.Google Scholar
Wogelius, P., Haubek, D. & Poulsen, S. (2008). Prevalence and distribution of demarcated opacities in permanent 1st molars and incisors in 6 to 8-year-old Danish children. Acta Odontol Scand 66, 5864.Google Scholar
Wright, J.T., Hall, K.I. & Grubb, B.R. (1996). Enamel mineral composition of normal and cystic fibrosis transgenic mice. Adv Dent Res 10, 270274.Google Scholar
Xie, Z., Kilpatrick, N.M., Swain, M.V., Munroe, P.R. & Hoffman, M. (2008). Transmission electron microscope characterisation of molar-incisor-hypomineralization. J Mater Sci Mater Med 19, 31873192.Google Scholar
Xie, Z.H., Mahoney, E.K., Kilpatrick, N.M., Swain, M.V. & Hoffman, M. (2007). On the structure-property relationship of sound and hypomineralized enamel. Acta Biomater 3, 865872.Google Scholar
Supplementary material: File

Melin supplementary material

Table

Download Melin supplementary material(File)
File 38.1 KB