Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-20T06:34:42.271Z Has data issue: false hasContentIssue false

Using Cathodoluminescence Spectroscopy of Cretaceous Calcareous Microfossils to Distinguish Biogenic from Early-Diagenetic Calcite

Published online by Cambridge University Press:  20 November 2012

Jens E. Wendler*
Affiliation:
Department of Paleobiology, Smithsonian Institution, P.O. Box 37012, MRC 121, Washington, DC 20560, USA Department of Geosciences, Bremen University, P.O. Box 330440, 28334 Bremen, Germany
Ines Wendler
Affiliation:
Department of Paleobiology, Smithsonian Institution, P.O. Box 37012, MRC 121, Washington, DC 20560, USA Department of Geosciences, Bremen University, P.O. Box 330440, 28334 Bremen, Germany
Timothy Rose
Affiliation:
Department of Mineral Sciences, Smithsonian Institution, P.O. Box 37012, MRC 121, Washington, DC 20560, USA
Brian T. Huber
Affiliation:
Department of Paleobiology, Smithsonian Institution, P.O. Box 37012, MRC 121, Washington, DC 20560, USA
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

A comparative cathodoluminescence (CL) spectroscopic study of extraordinarily well-preserved versus diagenetically altered Turonian (∼92 Ma before present) calcitic and aragonitic microfossils was performed to document the cathodoluminescence characteristics of two common Cretaceous carbonate producers, foraminifera and calcareous dinoflagellates. Unaltered specimens reveal a conspicuous peak in the blue CL band at ∼400 nm that has rarely been previously reported for biogenic carbonates. We interpret this luminescence as an indicative feature of the primary bio-mineralized shells of calcareous dinoflagellates and foraminifera. Orange luminescence as the second important CL emission band (∼620 nm) in calcite generally increases with diagenetic cement overgrowth and recrystallization but can also be present in unaltered material. Thus, orange CL of biogenic calcite is not an unequivocal diagenetic indicator. Accordingly, spectroscopic investigation of both the ∼400 and ∼620 nm peaks represents a more objective criterion to evaluate the degree of diagenetic alteration. The ratio of relative intensities of the blue CL versus orange CL can provide a semiquantitative measure with relative intensity ratios blue:orange >2 occurring in the least diagenetically altered microfossils. Comparison of unaltered specimens of separate species reveals elemental differences that potentially indicate species-specific biomineralization or habitats.

Type
Special Section: Cathodoluminescence
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbin, V. (1992). Fluctuation in shell composition in Nautilus (Cephalopoda, Mollusca): Evidence from cathodoluminescence. Lethaia 25, 391400.CrossRefGoogle Scholar
Barbin, V., Brand, U., Hewitt, R.A. & Ramseyer, K. (1995). Similarity in cephalopod shell biogeochemistry since carboniferous: Evidence from cathodoluminescence. Geobios 28, 701710.CrossRefGoogle Scholar
Barbin, V., Ramseyer, K., Debenay, J.P., Schein, E., Roux, M. & Decrouez, D. (1991). Cathodoluminescence of Recent biogenic carbonates: An environmental and ontogenetic fingerprint. Geol Mag 128, 1926.CrossRefGoogle Scholar
Barbin, V., Ramseyer, K. & Elfman, M. (2008). Biological record of added manganese in seawater: A new efficient tool to mark in vivo growth lines in the oyster species Crassostrea gigas . Int J Earth Sci 97, 193199.CrossRefGoogle Scholar
Calderon, T., Aguilar, M., Jaque, F. & Coy-yll, R. (1984). Thermoluminescence from natural calcite. J Phys 17, 20272038.Google Scholar
Czerniakowski, L.A., Lohmann, K. & Wilson, J.L. (1984). Closed system marine burial diagenesis: Isotopic data from the Austin Chalk and its components. Sedimentology 31, 863877.CrossRefGoogle Scholar
Friedman, G.M., Barbin, V., Schein, E., Roux, M., Ramseyer, K., Debenay, J.P. & Decrouez, D. (1993). Discussion of cathodoluminescence of recent biogenic carbonates: An environmental and ontogenetic fingerprint. Geol Mag 130, 269270.CrossRefGoogle Scholar
Habermann, D., Goetze, J., Neuser, R.D. & Richter, D.K. (1999). The phenomenon of intrinsic cathodoluminescence: Case studies of quartz, calcite and apatite. Zbl Geol Palaeont Teil 1 H. 1012, 12751284.Google Scholar
Habermann, D., Neuser, R.D. & Richter, D.K. (1996). REE-activated cathodoluminescence of calcite and dolomite: High resolution spectrometric analysis of CL emission (HRS-CL). Sed Geol 101, 17.CrossRefGoogle Scholar
Jiménez Berrocoso, Á., Huber, B.T., MacLeod, K.G., Petrizzo, M.R., Lees, J.A., Wendler, I., Coxall, H., Mweneinda, A.K., Falzoni, F., Birch, H, Singano, J.M., Haynes, S., Cotton, L., Wendler, J., Bown, P.R., Robinson, S. & Gould, J. (2012). Lithostratigraphy, biostratigraphy and chemostratigraphy of Upper Cretaceous and Paleogene sediments from southern Tanzania: Tanzania Drilling Project Sites 27 to 35. J Afr Earth Sci 70, 3657.CrossRefGoogle Scholar
Jiménez Berrocoso, Á., MacLeod, K.G., Huber, B.T., Lees, J.A., Wendler, I., Bown, P.R., Mweneinda, A.K., Isaza Londoño, C. & Singano, J.M. (2010). Lithostratigraphy, biostratigraphy and chemostratigraphy of Upper Cretaceous sediments from southern Tanzania: Tanzania Drilling Project Sites 21 to 26. J Afr Earth Sci 57, 4769.CrossRefGoogle Scholar
Keupp, H. & Kienel, U. (1994). Wandstrukturen bei Pithonelloideae (Kalkige Dinoflagellaten-Zysten): Biomineralisation und systematische Konsequenzen. Abh Geol B-A 50, 197217.Google Scholar
Marshall, D.J. (1988). Cathodoluminescence of Geological Materials. Boston, MA: Unwin Hyman.Google Scholar
Mason, R.A. & Mariano, A.N. (1990). Cathodoluminescence activation in manganese bearing and rare-earth bearing synthetic calcites. Chem Geol 88, 191206.CrossRefGoogle Scholar
Masters, B.A. & Scott, R.W. (1978). Microstructure, affinities and systematics of Cretaceous calcispheres. Micropaleontology 24, 210221.CrossRefGoogle Scholar
Pagel, M., Barbin, V. & Blanc, P. (2000). Cathodoluminescence in Geoscience. Berlin: Springer.Google Scholar
Popp, B.N., Podosek, F.A., Brannon, J.C., Anderson, T.F. & Pier, J. (1986). 87Sr/86Sr ratios in Permo-Carboniferous sea water from the analysis of well-preserved brachiopod shells. Geochim Cosmochim Ac 50, 13211328.CrossRefGoogle Scholar
Richter, D.K. & Zinkernagel, U. (1981). Zur Anwendung der Kathodolumineszenz in der Karbonatpetrographie. Geol Rundsch 70, 276302.CrossRefGoogle Scholar
Wendler, J., Grafe, K.U. & Willems, H. (2002). Reconstruction of mid-Cenomanian orbitally forced palaeoenvironmental changes based on calcareous dinoflagellate cysts. Palaeogeogr Palaeocl 179, 1941.CrossRefGoogle Scholar
Wendler, I., Huber, B.T., MacLeod, K.G. & Wendler, J. (2011). Early evolutionary history of Tubulogenerina and Colomia, with new species from the Turonian of East Africa. J Foramin Res 41, 384400.CrossRefGoogle Scholar
Wendler, J., Köster, J., Götze, J., Kasch, N., Zisser, N., Kley, J., Pudlo, D., Nover, G. & Gaupp, R. (2012). Carbonate diagenesis and feldspar alteration in fracture-related bleaching zones (Buntsandstein, Central Germany)—Possible link to CO2-influenced fluid-mineral-reactions. Int J Earth Sci 101, 159176.CrossRefGoogle Scholar
Wendler, J.E., Wendler, I., Huber, B.T. & MacLeod, K.G. (2010). What are calcisheres?—Pristine specimens from the Tanzania Drilling Project provide unprecedented insight into an enigmatic Cretaceous microfossil group. Geol S Am Abstr Prog 42, 131.Google Scholar
Zuegel, P. (1994). Verbreitung kalkiger Dinoflagellaten-Zysten im Cenoman/Turon von Westfrankreich und Norddeutschland. Cour For Senck 176, 1159.Google Scholar