Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T05:22:05.709Z Has data issue: false hasContentIssue false

The Use of SIMS and SEM for the Characterization of Individual Particles with a Matrix Originating from a Nuclear Weapon

Published online by Cambridge University Press:  09 May 2007

Ylva Ranebo
Affiliation:
European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany Department of Medical Radiation Physics, Lund University, SE-221 85 Lund, Sweden
Mats Eriksson
Affiliation:
IAEA-MEL, 4 Quai Antoine 1er, MC 98000, Monaco
Gabriele Tamborini
Affiliation:
European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
Nedialka Niagolova
Affiliation:
European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
Olivier Bildstein
Affiliation:
European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
Maria Betti
Affiliation:
European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
Get access

Abstract

The application of scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS) for characterization of mixed plutonium and uranium particles from nuclear weapons material is presented. The particles originated from the so-called Thule accident in Greenland in 1968. Morphological properties have been studied by SEM and two groups were identified: a “popcorn” structure and a spongy structure. The same technique, coupled with an energy-dispersive X-ray (EDX) spectrometer, showed a heterogeneous composition of Pu and U in the surface layers of the particles. The SIMS depth profiles revealed a varying isotopic composition indicating a heterogeneous mixture of Pu and U in the original nuclear weapons material itself. The depth distributions agree with synchrotron-radiation-based μ-XRF (X-ray fluorescence microprobe) measurements on the particle (Eriksson, M., Wegryzynek, D., Simon, R., & Chinea-Cano, E., in prep.) when a SIMS relative sensitivity factor for Pu to U of 6 is assumed. Different SIMS identified isotopic ratio groups are presented, and the influence of interferences in the Pu and U mass range are estimated. The study found that the materials are a mixture of highly enriched 235U (235U:238U ratio from 0.96 to 1.4) and so-called weapons grade Pu (240Pu:239Pu ratio from 0.028 to 0.059) and confirms earlier work reported in the literature.

Type
SPECIAL SECTION: MICROANALYSIS OF MATERIALS TODAY
Copyright
© 2007 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aarkrog, A. (1971). Radioecological investigations of plutonium in an arctic marine environment. Health Phys 20, 3147.Google Scholar
Aarkrog, A., Dahlgaard, H., Holm, E., Lippert, J. & Nilsson, K. (1980). Environmental radioactivity in Greenland in 1979. Risø-R-423, Risø National Laboratory, Roskilde, Denmark.
Berger, M.J., Coursey, J.S., Zucker, M.A. & Chang, J. (2005a). ESTAR, PSTAR, and ASTAR: Computer programs for calculating stopping-power and range tables for electrons, protons, and helium ions (version 1.2.3). Gaithersburg, MD: National Institute of Standards and Technology. Available at: http://physics.nist.gov/STAR (accessed January 2007).
Berger, M.J., Hubbell, J.H., Seltzer, S.M., Chang, J., Coursey, J.S., Sukumar, R. & Zucker, D.S. (2005b). XCOM: Photon Cross Section Database (version 1.3). Gaithersburg, MD: National Institute of Standards and Technology. Available at: http://physics.nist.gov/xcom (accessed January 2007).
Betti, M., Tamborini, G. & Koch, L. (1999). Use of secondary ion mass spectrometry in nuclear forensic analysis for the characterization of plutonium and highly enriched uranium particles. Anal Chem 71, 26162622.Google Scholar
Ciurapinski, A., Parus, J. & Donohue, D. (2002). Particle analysis for a strengthened safeguards system: Use of a scanning electron microscope equipped with EDXRF and WDXRF spectrometers. J Radioanal Nucl Chem 251, 345352.Google Scholar
Coakley, K.J., Simons, D.S. & Leifer, A.M. (2005). Secondary ion mass spectrometry measurements of isotopic ratios: Correction for time varying count rate. Int J Mass Spectrom 240, 107120.Google Scholar
Danesi, P.R. (1998). Investigating fallout from nuclear testing-hot particles and the Cold War. IAEA Bulletin, 40/4/1998, 4346.Google Scholar
Donohue, D.L. (2002). Strengthened nuclear safeguards. Anal Chem 74, 28A35A.Google Scholar
Erdmann, N., Betti, M., Stetzer, O., Tamborini, G., Kratz, J. V., Trautmann, N. & van Geel, J. (2000). Production of monodisperse uranium oxide particles and their characterization by scanning electron microscopy and secondary ion mass spectrometry. Spectrochim Acta B 55, 15651575.Google Scholar
Eriksson, M. (2002). On weapons plutonium in the arctic environment (Thule, Greenland). Ph.D. thesis, Risø-R-1321, Risø National Laboratory, Roskilde, Denmark.
Eriksson, M., Ljunggren, K. & Hindorf, C. (2002). Plutonium hot particle separation techniques using real-time digital image systems. Nucl Instrum Methods Phys Res A 488, 375380.Google Scholar
Eriksson, M., Osán, J., Jernström, J., Wegrzynek, D., Simon, R., Chinea-Cano, E., Markowicz, A., Bamford, S., Tamborini, G., Török, S., Falkenberg, G., Alsecz, A., Dahlgaard, H., Wobrauschek, P., Streli, C., Zoeger, N. & Betti, M. (2005). Source term identification of environmental radioactive Pu/U particles by their characterization with non-destructive spectrochemical analytical techniques. Spectrochim Acta B 60, 455469.Google Scholar
Eriksson, M., Wegryzynek, D., Simon, R. & Chinea-Cano, E. (in prep.). Microprobe XRF and combined transmission and μ-XRF tomography on mixed U/Pu particles.
Esaka, F., Watanabe, K., Magara, M. & Usuda, S. (2004). Application of secondary ion mass spectrometry to the measurement of lead isotope ratio in individual particles. Instrum Sci Technol 32, 103114.Google Scholar
Jernström, J., Eriksson, M., Osán, J., Tamborini, G., Török, S., Simon, R., Falkenberg, G., Alsecz, A. & Betti, M. (2004). Non-destructive characterization of low radioactive particles from Irish Sea sediment by micro X-ray synchrotron radiation techniques: Micro X-ray fluorescence (μ-XRF) and micro X-ray absorption near edge spectroscopy (μ-XANES). J Anal At Spectrom 19, 14281433.Google Scholar
Jernström, J., Eriksson, M., Simon, R., Tamborini, G., Bildstein, O., Carlos Marquez, R., Kehl, S. R., Hamilton, T. F., Ranebo, Y. & Betti, M. (2006). Characterization and source term assessments of radioactive particles from Marshall Islands using non-destructive analytical techniques. Spectrochim Acta B 61, 971979.Google Scholar
Jiménez-Ramos, M.C., García-Tenorio, R., Vioque, I., Manjón, G. & García-León, M. (2006). Presence of plutonium contamination in soils from Palomares (Spain). Environ Pollut 142, 487492.Google Scholar
Kashparov, V.A. (2003). Hot particles at Chernobyl. Environ Sci Pollut Res 1, 2130.Google Scholar
Komura, K., Sakanoue, M. & Yamamoto, M. (1984). Determination of 240Pu/239Pu ratio in environmental samples based on the measurement of Lα/X-ray activity ratio. Health Phys 46, 12131219.Google Scholar
Lehto, S. (2002). Development of a SIMS method for isotopic analysis of uranium containing particles. Report on Task FIN A 1318 of the Finnish Support Programme to IAEA Safeguards, STUK-YTO-TR 188.
Lind, O.C. (2006). Characterisation of radioactive particles in the environment using advanced techniques. Ph.D. thesis, 2006:6, Norwegian University of Life Sciences, Aas, Norway.
Lind, O. C., Salbu, B., Janssens, K., Proost, K. & Dahlgaard, H. (2005). Characterization of uranium and plutonium containing particles originating from the nuclear weapons accident in Thule, Greenland, 1968. J Environ Radioact 81, 2132.Google Scholar
Ljunggren, K. (2003). Beta camera—Development and biomedical applications. Ph.D. thesis, LUJI-RADFYS-AVH-6/2003, Lund University, Sweden.
Mitchell, P.I., Vintró, L.L., Dahlgaard, H., Ganscó, C. & Sánchez-Cabeza, J.A. (1997). Perturbation in the 240Pu/239Pu global fallout ratio in local sediments following the nuclear accidents at Thule (Greenland) and Palomares (Spain). Sci Total Environ 202, 147153.Google Scholar
Morgan, A.E. & Werner, H.W. (1977). Quantitative SIMS studies with a uranium matrix. Surf Sci 65, 687699.Google Scholar
Newbury, D.E. & Myklebust, R.L. (2005). Simulation of electron-excited X-ray spectra with NIST-DIH Desktop Spectrum Analyzer (DTSA). Surf Interface Anal 37, 10451053.Google Scholar
Nielsen, S.P. & Roos, P. (2006). Thule-2003—Investigations of radioactive contamination. Risø-R-1549, Risø National Laboratory, Roskilde, Denmark.
Nittler, L.R. & Alexander, C.M.O'D. (2003). Automated isotopic measurements of micron-sized dust: Application to meteoritic presolar silicon carbide. Geochim Cosmochim Acta 67, 49614980.Google Scholar
Peng, L.-M., Chen, Q., Liang, X.L., Gao, S., Wang, J.Y., Kleindiek, S. & Tai, S.W. (2004). Performing probe experiments in the SEM. Micron 35, 495502.Google Scholar
Pöllänen, R., Ketterer, M.E., Lehto, S., Hokkanen, M., Ikäheimonen, T.K., Siiskonen, T., Moring, M., Rubio Montero, M.P. & Martín Sánchez, A. (2006). Multi-technique characterization of a nuclear bomb particle from the Palomares accident. J Environ Radioact 90, 1528.Google Scholar
Potter, P.E., Ray, I., Tamborini, G., Thiele, H., Walker, C. & Wiss, T. (2005). On the constitution of some Dounreay radioactive particles. In Proceedings of the Conference on Managing Historic Hot Particle Liabilities in the Marine Environment. Nairn, Scotland.
Ray, I.L.F., Thiele, H. & Wiss, T. (2006). Microbeam analysis in combating smuggling of nuclear materials. Presented at EMAS 2006—7th Regional Workshop on Electron Probe Microanalysis Today, Karlsruhe, Germany.
Salbu, B., Lind, O.C. & Skipperud, L. (2004). Radionuclide speciation and its relevance in environmental impact assessments. J Environ Radioact 74, 233242.Google Scholar
Sandalls, F.J., Segal, M.G. & Victorova, N. (1993). Hot particles from Chernobyl: A review. J Environ Radioact 18, 522.Google Scholar
Shevchenko, S.V. (2004). On the uncertainty in activity measurements for samples containing “hot particles”. Appl Radiat Isot 61, 13031306.Google Scholar
Simons, D.S. (1986). Single particle standards for isotopic measurements of uranium by secondary ion mass spectrometry. J Trace Microprobe Tech 4, 185195.Google Scholar
Simons, D.S. (1991). SIMS analysis of fused clay microspheres containing plutonium. In Proceedings of the 8th International Conference on Secondary Ion Mass Spectrometry (SIMS VIII), Benninghoven, A., Janssen, K.T.F., Tümpner, J. & Werner, H.W. (Eds.), pp. 715718. New York: Wiley.
Stoffel(s), J.J., Briant, J.K. & Simons, D.S. (1994). A particulate isotopic standard of uranium and plutonium in an aluminosilicate matrix. J Am Soc Mass Spectrom 5, 852858.Google Scholar
Stürup, S., Dahlgaard, H. & Nielsen, S.C., (1998). High resolution inductively coupled plasma mass spectrometry for the trace determination of plutonium isotopes and isotope ratios in environmental samples. J Anal At Spectrom 13, 13211326.Google Scholar
Tamborini, G., Betti, M., Forcina, V., Hiernaut, T., Giovannone, B. & Koch, L. (1998). Application of secondary ion mass spectrometry to the identification of single particles of uranium and their isotopic measurement. Spectrochim Acta B 53, 12891302.Google Scholar
Traxlmayr, U., Riedling, K. & Zinner, E. (1984). On the dead-time correction of ion counting systems during gated raster SIMS measurements. Int J Mass Spectrom Ion Proc 61, 261276.Google Scholar
Vekemans, B., Janssens, K., Vincze, L., Adams, F. & Van Espen, P. (1994). Analysis of X-ray spectra by iterative least squares (AXIL): New developments. X-ray Spectrom 23, 278285.Google Scholar
Wallenius, M., Mayer, K. & Ray, I. (2006). Nuclear forensic investigations: Two case studies. Forensic Sci Int 156, 5562.Google Scholar
Wallenius, M., Tamborini, G. & Koch, L. (2001). The “age” of plutonium particles. Radiochim Acta 89, 5558.Google Scholar
Whittall, A.J., McDonald, P., Jackson, D. & Tossell, P.J. (2000). Alpha-emitting “hot particles” in the vicinity of BNFL Sellafield, Cumbria. J Radiol Prot 20, 433442.Google Scholar
Zheltonozhsky, V., Mück, K. & Bondarkov, M. (2000). Classification of hot particles from the Chernobyl accident and nuclear weapons detonations by non-destructive methods. J Environ Radioact 57, 151166.Google Scholar