Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T21:22:34.589Z Has data issue: false hasContentIssue false

Tutorial Review: X-ray Mapping in Electron-Beam Instruments

Published online by Cambridge University Press:  24 January 2006

John J. Friel
Affiliation:
Princeton Gamma Tech, C/N 863, Princeton, NJ 08542, USA
Charles E. Lyman
Affiliation:
Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015, USA
Get access

Abstract

This review traces the development of X-ray mapping from its beginning 50 years ago through current analysis procedures that can reveal otherwise obscure elemental distributions and associations. X-ray mapping or compositional imaging of elemental distributions is one of the major capabilities of electron beam microanalysis because it frees the operator from the necessity of making decisions about which image features contain elements of interest. Elements in unexpected locations, or in unexpected association with other elements, may be found easily without operator bias as to where to locate the electron probe for data collection. X-ray mapping in the SEM or EPMA may be applied to bulk specimens at a spatial resolution of about 1 μm. X-ray mapping of thin specimens in the TEM or STEM may be accomplished at a spatial resolution ranging from 2 to 100 nm, depending on specimen thickness and the microscope. Although mapping has traditionally been considered a qualitative technique, recent developments demonstrate the quantitative capabilities of X-ray mapping techniques. Moreover, the long-desired ability to collect and store an entire spectrum at every pixel is now a reality, and methods for mining these data are rapidly being developed.

Type
50 YEARS OF X-RAY MAPPING
Copyright
2006 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allard, L.F. & Blake, D.F. (1982). The practice of modifying an analytical electron microscope to produce clean X-ray spectra. In Microbeam Analysis—1982, Heinrich, K.F.J. (Ed.), pp. 820. San Francisco, CA: San Francisco Press.
Anderhalt, R.W. & Sandborg, A.O. (1989). Quantitative compositional mapping in a scanning electron microscope with an energy-dispersive spectrometer. In Microbeam Analysis—1989, pp. 249253. San Francisco, CA: San Francisco Press.
Anderson, C.A. & Hasler, M.F. (1966). Extension of electron microprobe techniques to biochemistry by the use of long wavelength X-rays. In Proceedings of the Fourth International Conference on X-ray Optics and Microanalysis, Castaing, R., Deschamps, P. & Philibert, J. (Eds.), pp. 310327. Paris: Hermann.
Anderson, I.M. (1998). Statistical analysis of low-voltage EDS spectrum images. In Electron Microscopy 1998, Proceedings of the 14th International Congress on Electron Microscopy, Benavides, H.A. & Yacaman, M.J. (Eds.), pp. 357358. Philadelphia: Institute of Physics.
Anderson, I.M. (2000a). Spectrum imaging: Microanalysis for a new millennium. Microsc Microanal 6 (Suppl. 2), 10481049.Google Scholar
Anderson, I.M. (2000b). Spectrum imaging: The future of quantitative X-ray mapping? In Microbeam Analysis 2000, pp. 437438. Philadelphia: Institute of Physics.
Armstrong, J.T. (1988). Quantitative analysis of silicate and oxide materials: Comparison of Monte Carlo, ZAF, and phi-rho-z procedures. In Microbeam Analysis—1988, pp. 239245. San Francisco, CA: San Francisco Press.
Bennett, J.C. & Egerton, R.F. (1995). NiO test specimens for analytical electron microscopy: Round-robin results. Microsc Microanal 1, 143150.Google Scholar
Berger, M.J. (1963). Monte Carlo calculation of the penetration and diffusion of fast charged particles. In Methods in Computational Physics, Adler, B., Fernback, S. & Rotenberg, M. (Eds.), pp. 135215. New York: Academic Press.
Bonnet, N. (1998). Multivariate statistical methods for the analysis of microscope image series: Applications in materials science. J Microsc 190, 218.Google Scholar
Bonnet, N., Simova, E., Lebonvallet, S., & Kaplan, H. (1992). New applications of multivariate statistical analysis in spectroscopy and microscopy. Ultramicroscopy 40, 111.Google Scholar
Boyes, E.D. (2000). On low voltage scanning electron microscopy and chemical analysis. Microsc Microanal 6, 307316.Google Scholar
Boyes, E.D. (2001). Analytical potential of EDS at low voltages. Microchem Acta 138, 225234.Google Scholar
Bremier, S., Mostert, M., & Walker, C.T. (2000). Quantitative X-ray mapping in wavelength dispersive electron probe microanalysis. In Microbeam Analysis 2000, pp. 443444. Philadelphia: Institute of Physics.
Bright, D.S. (1995). Measurement of chemical components using scatter diagrams with principal component analysis. In Microbeam Analysis 1995, Etz, E. (Ed.), pp. 403404. Breckenridge, CO: VCH Publishers.
Bright, D.S. & Marinenko, R.B. (1992). Concentration histogram imaging. MSA Bull 22, 2128.Google Scholar
Bright, D.S. & Newbury, D.E. (1991). Concentration histogram imaging: A scatter diagram technique for viewing two or three related images. Anal Chem 63, 243A250A.Google Scholar
Bright, D.S. & Newbury, D.E. (2004). Maximum pixel spectrum: A new tool for detecting an drecovering rare, unanticipated features from spectrum image data cubes. J Microsc 216, 186193.Google Scholar
Brundle, D., Uritsky, Y., & Chernoff, D. (1996). Real-time simulation for X-ray microanalysis. Solid State Technol 39, 105194.Google Scholar
Buskes, H.A. & Baughman, G.D. (1988). Quantitative large-area mapping with an analytical scanning electron microscope: A study of low-level elemental segregation in continuous cast steel. In Microbeam Analysis—1988, pp. 4446. San Francisco, CA: San Francisco Press.
Cantrill, R.K., Guiver, T.A., & Moore, L.G. (1990). Large area X-ray mapping in continuously cast steel sections using the CAMECA SX-50 electron probe microanalyzer. Trans Roy Microsc Soc 1, 1922.Google Scholar
Castaing, R. (1951). Application of electron probes to local chemical and crystallographic analysis. Ph.D. dissertation, University of Paris.
Cazaux, J. (1996). Electron probe microanalysis of insulating materials: Quantitation problems and some possible solutions. X-ray Spectrom 25, 265280.Google Scholar
Chambers, W.F. (1981). Digitally controlled X-ray mapping. In Microbeam Analysis—1981, Geiss, R.H. (Ed.), pp. 4344. San Francisco, CA: San Francisco Press.
Cliff, G. & Kenway, P.B. (1982). The effects of spherical aberration in probe-forming lenses on probe size, image resolution, and X-ray spatial resolution in scanning transmission electron microscopy. In Microbeam Analysis—1982, Heinrich, K.F.J. (Ed.), pp. 107110. San Francisco, CA: San Francisco Press.
Cliff, G. & Lorimer, G.W. (1975). The quantitative analysis of thin specimens. J Microsc 103, 203207.Google Scholar
Colliex, C. & Mory, C. (1983). Quantitative aspects of scanning transmission electron microscopy. In Quantitative Electron Microscopy, Scottish Universities Summer School in Physics, Chapman, J.N. & Craven, A.J. (Eds.), pp. 149155. Glasgow, Scotland: Institute of Physics.
Cosslett, V.E. & Duncumb, P. (1956). Microanalysis by a flying-spot X-ray method. Nature 177, 11721173.Google Scholar
Duncumb, P. & Cosslett, V.E. (1957). A scanning microscope for X-ray emission pictures. In X-ray Microscopy and Microradiography, Cosslett, V.E., Engstrom, A. & Pattee, H.H. (Eds.), pp. 374380. New York: Academic Press.
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press.
Egerton, R.F. & Cheng, S.C. (1994). Characterization of an analytical electron microscope with a NiO test specimen. Ultramicroscopy 55, 4354.Google Scholar
Ekelund, S. & Werlefors, T. (1976). A system for quantitative characterization of microstructures by combined image analysis and X-ray discrimination in the scanning electron microscope. In Scanning Electron Microscopy/1976, Johari, O. (Ed.), vol. 1, pp. 417424. Chicago, IL: IIT Research Institute.
Fiori, C. (1986a). Computer-aided imaging and interpretation. In Advanced Scanning Electron Microscopy and X-ray Microanalysis, Newbury, D.E., Joy, D.C., Echlin, P., Fiori, C. & Goldstein, J.I. (Eds.), pp. 181241. New York: Plenum.
Fiori, C.E. (1986b). Quantitative compositional analysis of biological cryosections. In Microbeam Analysis—1986, pp. 183186. San Francisco, CA: San Francisco Press.
Fiori, C.E., Leapman, R.D., Swyt, C.R., & Andrews, S.B. (1988). Quantitative X-ray mapping of biological cryosections. Ultramicroscopy 24, 237249.Google Scholar
Fiori, C.E., Swyt, C.R., & Gorlen, K.E. (1984). Continuum correction of X-ray images in scanning electron column instruments. In Microbeam Analysis—1984, Romig, A.D. & Goldstein, J.I. (Eds.), pp. 179185. San Francisco, CA: San Francisco Press.
Fitzgerald, R., Keil, K., & Heinrich, K.F.J. (1968). Solid-state energy dispersion spectrometer for electron-microprobe X-ray analysis. Science 159, 528530.Google Scholar
Friel, J.J. (1987). Computer-aided imaging of basaltic glass. In Microbeam Analysis—1987, pp. 325326. San Francisco, CA: San Francisco Press.
Friel, J.J. & Batcheler, R. (2002). Automatic phase segmentation of spectrum images. Microsc Microanal 8 (Suppl. 2), 350351.Google Scholar
Friel, J.J. & Greenhut, V. (1997). Novel technology for X-ray mapping of ceramic microstructures. J Am Ceram Soc 80, 32053208.Google Scholar
Friel, J.J. & Prestridge, E.B. (2002). Combined LM, SEM, and X-ray microanalysis of tint-etched cast iron. Microsc Anal 57, 57.Google Scholar
Fritz, G.S., McCarthy, J.J., & Lee, R.J. (1981). Interactive software for automated particulate analysis. Microbeam Analysis—1981, pp. 5760. San Francisco, CA: San Francisco Press.
Gao, N., Ponomarev, I.Y., Xiao, Q.F., Gibson, W.M., & Carpenter, D.A. (1996). Monolithic polycapillary focusing optics and their applications in microbeam X-ray fluorescence. Appl Phys Lett 69, 15291531.Google Scholar
Garratt-Reed, A.J. (1990). Applications of high-resolution X-ray mapping. In Microbeam Analysis—1990, Michael, J.R. & Ingram, P. (Eds.), pp. 272274. San Francisco, CA: San Francisco Press.
Goldstein, J.I., Costley, J.L., Lorimer, G.W., & Reed, S.J.B. (1977). Quantitative X-ray analysis in the electron microscope. In Scanning Electron Microscopy/1977. Johari, O. (Ed.), vol. 1, pp. 315324. Chicago, IL: IIT Research Institute.
Goldstein, J.I., Lyman, C.E., & Zhang, J. (1990). In Microbeam Analysis—1990, Michael, J.R. & Ingram, P. (Eds.), pp. 265271. San Francisco, CA: San Francisco Press.
Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Fiori, C., & Lifshin, E. (1981). Scanning Electron Microscopy and X-ray Microanalysis. New York: Plenum Press.
Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Lyman, C.E., Romig, A.D., Fiori, C.E., & Lifshin, E. (1992). Scanning Electron Microscopy and X-ray Microanalysis. New York: Plenum.
Goldstein, J.I., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L., & Michael, J.R. (2003). Scanning Electron Microscopy and X-ray Microanalysis. New York: Kluwer Academic/Plenum Publishers.
Goldstein, J.I., Williams, D.B., & Cliff, G. (1986). Quantitative X-ray analysis. In Principles of Analytical Electron Microscopy, Joy, D.C., Romig, A.D. & Goldstein, J.I. (Eds.), pp. 155217. New York: Plenum Press.
Green, M. (1963). A Monte Carlo calculation of the spatial distribution of characteristic X-ray production in a solid target. Proc Phys Soc 82, 204215.Google Scholar
Hall, T.A. (1979). Problems of the continuum-normalization method for the quantitative analysis of sections of soft tissue. In Microbeam Analysis in Biology, Lechene, C. & Warner, R.R. (Eds.), pp. 185208. New York: Academic Press.
Hall, T.A. & Gupta, B.L. (1982). Quantitation for the X-ray microanalysis of cryosections. J Microsc 126, 333345.Google Scholar
Harman, H.H. (1967). Modern Factor Analysis. Chicago: University of Chicago Press.
Heinrich, K.F.J. (1962a). Concentration mapping device for the scanning electron probe microanalyzer. Rev Sci Instrum 33, 884.Google Scholar
Heinrich, K.F.J. (1962b). Oscilloscope readout of electron microprobe data. Adv X-ray Anal 6, 291300.Google Scholar
Heinrich, K.F.J., Newbury, D.E., & Yakowitz, H. (1976). Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy. Washington, DC: National Institute of Science and Technology.
Hoover, M.R., White, E.W., Lebiedzik, J., & Johnson, G.G. (1975). Automated characterization of particulates and inclusions by computer-controlled SEM/probe. In Proceedings of the 10th Conference of the Microbeam Analysis Society, pp. 54A54B. Bethlehem, PA: Microbeam Analysis Society.
Hovington, P., Drouin, D., & Gauvin, R. (1997). Casino: A new Monte Carlo code for electron beam interaction, part I: Description of the program. Scanning 19, 114.Google Scholar
Hunneyball, P.D., Jacobs, M.H., & Law, T.J. (1981). Digital X-ray mapping from thin foils. In Quantitative Microanalysis with High Spatial Resolution, Lorimer, M.J.G.W. & Doig, P. (Eds.), pp. 195201. London: The Metals Society.
Hunt, J.A. & Williams, D.B. (1991). Electron energy-loss spectrum-imaging. Ultramicroscopy 38, 4773.Google Scholar
Ingram, P., LeFurgey, A., Davilla, S.D., Sommer, S.R., Mandel, L.J., Lieberman, M., & Herlong, J.R. (1988). Quantitative elemental X-ray imaging of biological cryosections. In Microbeam Analysis—1988, Newbury, D.E. (Ed.), pp. 433439. San Francisco, CA: San Francisco Press.
Jbara, O., Cazaux, J., & Trebbia, P. (1995). Sodium diffusion in glasses during electron irradiation. J Appl Phys 78, 868875.Google Scholar
Jeanguillaume, C. & Colliex, C. (1989). Spectrum-image: The next step in EELS digital acquisition and processing. Ultramicroscopy 28, 252257.Google Scholar
Joy, D.C. (1995). Monte Carlo Modeling for Electron Microscopy and Microanalysis. New York: Oxford University Press.
Kawasaki, M., Oikawa, T., Ibe, K., Park, K.-H., & Shiojiri, M. (1998). EDS elemental mapping of a DRAM with an FE-TEM. J Elec Microsc 47, 335343.Google Scholar
Keast, V.J. & Williams, D.B. (1999). Quantitative compositional mapping of Bi segregation to grain boundaries in Cu. Acta Mater 47, 39994008.Google Scholar
Kelly, J.F., Lee, R.J., & Lentz, S. (1980). Automatic characterization of fine particles. In Scanning Electron Microscopy/1980, Johari, O. (Ed.), vol. 1, pp. 311322. AMF O'Hare, IL: SEM Inc.
Kotula, P.G., Keenan, M.R., Grant, R.P., & Hlava, P.F. (2004a). Multivariate statistical analysis of wavelength and energy-dispersive X-ray spectral images. Microsc Microanal 10 (Suppl. 2), 118119.Google Scholar
Kotula, P.G., Keenan, M.R., & Michael, J.R. (2003a). Automated analysis of SEM X-ray spectral images: A powerful new microanalysis tool. Microsc Microanal 9, 117.Google Scholar
Kotula, P.G., Keenan, M.R., & Michael, J.R. (2003b). Tomographic spectral imaging: Comprehensive 3D X-ray microanalysis. Microsc Microanal 9 (Suppl. 2), 10041005.Google Scholar
Kotula, P.G., Keenan, M.R., & Michael, J.R. (2004b). Tomographic spectral imaging with a dual-beam FIB/SEM: 3D microanalysis. Microsc Microanal 10 (Suppl. 2), 11321133.Google Scholar
Kotula, P.G., Keenan, M.R., & Michael, J.R. (2006). Tomographic spectral imaging with multivariate statistical analysis: Comprehensive 3D microanalysis. Microsc Microanal 12, 3648 (this issue).Google Scholar
Kuypers, S. (2001). Soft X-rays and low voltage SEM in practice. Microchem Acta 138, 235247.Google Scholar
Lamvik, M.K., Ingram, P., Menon, R.G., Beese, L.S., Davilla, S.D., & LeFurgey, A. (1989). Correction for specimen movement after acquisition of element-specific electron microprobe images. J Microsc 156, 183190.Google Scholar
Lee, R.J., Huggins, F.E., & Huffman, G.P. (1978). Correlated Mossbauer-SEM studies of coal mineralogy. In Scanning Electron Microscopy/1978, Johari, O. (Ed.), vol. 1, pp. 561568. AMF O'Hare, IL: SEM Inc.
LeFurgey, A., Davilla, S.D., Kopf, D.A., Sommer, J.R., & Ingram, P. (1992). Real-time quantitative elemental analysis and mapping microchemical imaging in cell physiology. J Microsc 165, 191223.Google Scholar
Legge, G.J.F. & Hammond, I. (1979). Total quantitative recording of elemental maps and spectra with a scanning microprobe. J Microsc 117, 201210.Google Scholar
Long, N.J. (1990). Digital X-ray mapping on an HB501 STEM: A new approach for the analysis of interfaces. Ultramicroscopy 34, 8183.Google Scholar
Lyman, C.E. (1986). Digital X-ray imaging of small particles. Ultramicroscopy 20, 119124.Google Scholar
Lyman, C.E. (1992). Compositional imaging in the electron microscope: An overview. EMSA Bull 22, 19.Google Scholar
Lyman, C.E., Goldstein, J.I., Williams, D.B., Ackland, D.W., von Harrach, S., Nicholls, A.W., & Statham, P.J. (1994). High-performance X-ray detection in a new analytical electron microscope. J Microsc 176, 8598.Google Scholar
Lyman, C.E., Stenger, H.G., & Michael, J.R. (1987). Analytical electron microscopy of a sulfur-poisoned palladium catalyst with a dedicated STEM. Ultramicroscopy 22, 129133.Google Scholar
Malis, T., Cheng, S.C., & Egerton, R.F. (1988). EELS log-ratio technique for specimen-thickness measurement in the TEM. J Electron Microsc Tech 8, 193200.Google Scholar
Marinenko, R.B., Myklebust, R.L., Bright, D.B., & Newbury, D.E. (1987). Digital compositional mapping with standard map corrections for wavelength-dispersive spectrometry defocusing. J Microsc 145, 207223.Google Scholar
McCamy, C.S. (1998). On the number of discernible colors: Comment. Color Res Appl 23, 337.Google Scholar
McCarthy, J.J. (1979). A new technique for beam current normalization in energy dispersive analysis. In Microbeam Analysis—1979, pp. 305306. San Francisco, CA: San Francisco Press.
McCarthy, J.J. (1998). Thirty years of energy-dispersive spectrometry in microanalysis: Introduction. Microsc Microanal 4, 551.Google Scholar
McCarthy, J.J., Fritz, G.S., & Lee, R.J. (1981). Acquisition, storage, and display of video and X-ray images. In Microbeam Analysis—1981, pp. 3034. San Francisco, CA: San Francisco Press.
Meeker, G.P. (1995). Constraints on formation processes of two coarse-grained calcium-aluminum-rich inclusions: A study of mantles, islands, and cores. Meteoritics 30, 7184.Google Scholar
Melford, D.A. & Duncumb, P. (1958). The metallurgical application of X-ray scanning microanalysis. Metallurgia 57, 159161.Google Scholar
Michael, J.R. & Taylor, K.A. (1988). High-resolution X-ray imaging of small copper-rich precipitates in steels. In 46th Annual Meeting of the Electron Microscopy Society of America, Bailey, G.W. (Ed.), pp. 528529. San Francisco, CA: San Francisco Press.
Miller, P.R., Reid, A.F., & Zuiderwyk, M.A. (1982). QEM*SEM image analysis in the determination of modal assays, mineral associations, and mineral liberation. In Proceedings—XIV International Mineral Processing Congress, Toronto, Canada & Maltby, P.D.R. (Ed.), vol. 8, p. 3. Amsterdam: Elsevier.
Mosteller, F. & Tukey, J.W. (1977). Data Analysis and Regression. Reading, MA: Addison-Wesley.
Mott, R.B. & Friel, J.J. (1999). Saving the photons: Mapping X-rays by position-tagged spectrometry. J Microsc 193, 214.Google Scholar
Mott, R.B., Waldman, C.G., Batcheler, R., & Friel, J.J. (1995). Position-tagged spectrometry: A new approach for EDS spectrum imaging. In Proceedings Microscopy and Microanalysis 1995, Bailey, G.W., Ellisman, M.H., Hennigar, R.A. & Zaluzec, N.J. (Eds.), pp. 592593. New York: Jones and Begell.
Myklebust, R.L., Newbury, D.E., & Marinenko, R.B. (1989). Strategies for background subtraction in electron probe microanalysis/X-ray compositional mapping. Analyt Chem 61, 16121618.Google Scholar
Newbury, D.E. (1992). Compositional imaging by electron probe microanalysis: Capabilities, limitations, opportunities. MSA Bull 22, 1120.Google Scholar
Newbury, D.E. (2006). The new X-ray mapping: X-ray spectrum imaging above 100 kHz output count rate with the silicon drift detector. Microsc Microanal 12, 2635 (this issue).Google Scholar
Newbury, D.E. & Bright, D.S. (1999). Logarithmic 3-band color encoding: Robust method for display and comparison of compositional maps in electron probe X-ray microanalysis. Microsc Microanal 5, 333343.Google Scholar
Newbury, D.E. & Bright, D.S. (2005). “Derived spectra” software tools for detecting spatial and spectral features in spectrum images. Scanning 27, 1522.Google Scholar
Newbury, D.E., Fiori, C.E., Marinenko, R.B., Myklebust, R.L., Swyt, C.R., & Bright, D.S. (1990a). Compositional mapping with the electron probe microanalyzer, part 1. Anal Chem 62, 1159A1166A.Google Scholar
Newbury, D.E., Fiori, C.E., Marinenko, R.B., Myklebust, R.L., Swyt, C.R., & Bright, D.S. (1990b). Compositional mapping with the electron probe microanalyzer, part 2. Anal Chem 62, 1245A1254A.Google Scholar
Newbury, D.E. & Joy, D.C. (1986). Modeling electron beam-specimen interactions. In Advanced Scanning Electron Microscopy and Microanalysis, Newbury, D.E., Joy, D.C., Echlin, P., Fiorim, C.E. & Goldstein, J.I. (Eds.), pp. 343. New York: Plenum Press.
Newbury, D.E., Marinenko, R.B., Myklebust, R.L., & Bright, D.S. (1991). Quantitative compositional mapping with the electron probe microanalyzer. In Electron Probe Quantitation, Heinrich, K.F.J. & Newbury, D.E. (Eds.), pp. 335369. New York: Plenum Press.
Nickerson, D. & Newhall, S.M. (1943). A psychological color solid. J Opt Soc Am 33, 419422.Google Scholar
Ono, Y., Nielsen, C.H., Tagata, S., & Seo, Y. (1985). High-speed wide-area analysis by electron probe. In Microbeam Analysis—1985, pp. 145147. San Francisco, CA: San Francisco Press.
Papworth, A.J. & Williams, D.B. (2000). Information obtained by X-ray mapping large sample areas in a FEGSTEM. In Microbeam Analysis 2000, Kona, H.I., Williams, D.B. & Shimizu, R. (Eds.), pp. 143144. Philadelphia: Institute of Physics.
Pointer, M.R. & Attridge, G.G. (1998). The number of discernible colours. Color Res Appl 23, 5254.Google Scholar
Reed, S.J.B. (1982). The single-scattering model and spatial resolution in X-ray analysis of thin foils. Ultramicroscopy 7, 405409.Google Scholar
Reuter, K.B. & Lyman, C.E. (1991). Improved stability of alkali metals on catalysts during analytical electron microscopy. In Proceedings of the 49th Annual Meeting of the Electron Microscopy Society of America, Bailey, G.W. & Hall, E.L. (Eds.), pp. 10161017. San Jose, CA: San Francisco Press.
Robinson, B.W., Ware, N.G., & Smith, D.G.W. (1998). Modern electron-microprobe trace-element analysis in mineralogy. In Modern Approaches to Ore and Environmental Mineralogy, Cabri, L.J. & Vaughan, D.J. (Eds.), Short Course Series vol. 27, pp. 153180. Ottawa: Mineralogical Association of Canada.
Russ, J.C. (1990). Computer-Assisted Microscopy. New York: Plenum Press.
Russ, J.C. (1999). The Image Processing Handbook. Boca Raton, FL: CRC Press.
Schultz, M., Rudolf, F., & Gallitelli, M.-F. (1999). Improvement in quantitative X-ray microanalysis of biological cryosections. Microsc Microanal 5, 187196.Google Scholar
Somlyo, A.P. (1984). Compositional mapping in biology: X-rays and electrons. J Ultrastruct Res 88, 135142.Google Scholar
Statham, P.J. (1988). Pitfalls and advances in quantitative elemental mapping. Scanning 10, 245252.Google Scholar
Statham, P.J. (1995). Quantifying benefits of resolution and count rate in EDX microanalysis. In X-ray Spectrometry in Electron Beam Instruments, Williams, D.B., Goldstein, J.I. & Newbury, D.E. (Eds.), pp. 101126. New York: Plenum.
Strüder, L., Meidinger, N., Stotter, D., Kemmer, J., Lechner, P., Leutenegger, P., Soltau, H., Eggert, F., Rohde, M., & Schülein, T. (1999). High-resolution X-ray spectroscopy close to room temperature. Microsc Microanal 4, 622631.Google Scholar
Sutfin, L.V. & Ogilvie, R.E. (1971). Role of the gas flow proportional counter in energy dispersion analysis. In Energy Dispersion X-ray Analysis: X-ray and Electron Probe Analysis, Russ, J.C. (Ed.), pp. 197216. Philadelphia, PA: ASTM.
Takahashi, H. & Okumura, T. (1998). Wide area mapping of uneven specimens in an electron probe X-ray microanalyzer with wavelength dispersive spectrometers. J Electron Microsc 47, 3946.Google Scholar
Titchmarsh, J.M. & Dumbill, S. (1996). Multivariate statistical analysis of FEG-STEM EDX spectra. J Microsc 184, 195207.Google Scholar
Titchmarsh, J.M., Dumbill, S., & Vatter, I.A. (1995). Investigation of interfacial segregation in steels using multivariate analysis of EDX spectra. In Microbeam Analysis—1995, Etz, E.S. (Ed.), pp. 259260. New York: VCH Publishers.
Tomura, T., Okano, H., Hara, K., & Wantanabe, T. (1968). Multistep intensity indication in scanning microanalysis. Adv X-ray Anal 11, 316325.Google Scholar
Trebbia, P. & Bonnet, N. (1990). EELS elemental mapping with unconventional methods I. Theoretical basis: Image analysis with multivariate statistics and entropy concepts. Ultramicroscopy 34, 165178.Google Scholar
Trebbia, P., Wulveryck, J.M., & Bonnet, N. (1995). Progress in quantitative elemental mapping by X-ray imaging. Microbeam Anal 4, 85102.Google Scholar
Tsuneta, R., Koguchi, M., Nakamura, K., & Nishida, A. (2002). A specimen-drift-free EDX mapping system in a STEM for observing two-dimensional profiles of low dose elements in fine semiconductor devices. J Electron Microsc 51, 167171.Google Scholar
Vale, S.H. (1987). Drift corrected X-ray mapping in the analytical electron microscope. In EMAG-1987: Analytical Electron Microscopy, Lorimer, G.W. (Ed.), pp. 1518. London: Institute of Metals.
Wachtman, J.B. (1993). Characterization of Materials. Stoneham, MA: Butterworth-Heinemann.
Warley, A. (1997). X-ray Microanalysis for Biologists. London: Portland Press.
Watanabe, M., Carpenter, D.T., Barmak, K., & Williams, D.B. (1997). Quantitative X-ray mapping with high resolution. In Electron Microscopy and Analysis 1997, pp. 295298. Bristol: Institute of Physics.
Watanabe, M., Horita, Z., & Nemoto, M. (1996). Absorption correction and thickness determination using zeta factor in quantitative X-ray microanalysis. Ultramicroscopy 65, 187198.Google Scholar
Watanabe, M. & Williams, D.B. (1999). Atomic-level detection by X-ray microanalysis in the analytical electron microscope. Ultramicroscopy 78, 89101.Google Scholar
Watanabe, M., Williams, D.B., & Tomokiyo, Y. (2003). Comparison of detectability limits for elemental mapping by EF-TEM and STEM-XEDS. Micron 34, 173183.Google Scholar
Williams, D.B. & Carter, C.B. (1996). Transmission Electron Microscopy. New York: Plenum Press.
Williams, D.B. & Goldstein, J.I. (1981). Artifacts encountered in energy dispersive X-ray spectrometry in the analytical electron microscope. In Energy Dispersive X-ray Spectrometry, Heinrich, K.F.J., Newbury, D.E., Myklebust, R.L. & Fiori, C.E. (Eds.). NBS Special Publication 604, pp. 341349. Washington, DC: National Bureau of Standards.
Williams, D.B., Goldstein, J.I., & Newbury, D.E., Eds. (1995). X-ray Spectrometry in Electron Beam Instruments. New York: Plenum Press.
Williams, D.B., Papworth, A.J., & Watanabe, M. (2002). High resolution X-ray mapping in the STEM. J Electron Microsc 51(Suppl.), S113S126.Google Scholar
Wong, J.G., Wilkinson, L.E., Chen, S.W., Izutsu, K.T., Johnson, D.E., & Cantino, M.E. (1989). Quantitative elemental imaging in the analytical electron microscope with biological applications. Scanning 11, 1219.Google Scholar
Ziebold, T.O. (1967). Precision and sensitivity in electron microprobe analysis. Anal Chem 39, 858861.Google Scholar
Zierold, K., Tardent, P., & Burakov, S.V. (1991). Elemental mapping of cryosections from cnidarian nematocytes. Scan Microsc 5, 439444.Google Scholar