Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T13:54:10.251Z Has data issue: false hasContentIssue false

Tuning Fifth-Order Aberrations in a Quadrupole-Octupole Corrector

Published online by Cambridge University Press:  30 July 2012

Andrew R. Lupini*
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Stephen J. Pennycook
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
*
Corresponding author. E-mail: [email protected]; [email protected]
Get access

Abstract

The resolution of conventional electron microscopes is usually limited by spherical aberration. Microscopes equipped with aberration correctors are then primarily limited by higher order, chromatic, and misalignment aberrations. In particular the Nion third-order aberration correctors installed on machines with a low energy spread and possessing sophisticated alignment software were limited by the uncorrected fifth-order aberrations. Here we show how the Nion fifth-order aberration corrector can be used to adjust and reduce some of the fourth- and fifth-order aberrations in a probe-corrected scanning transmission electron microscope.

Type
Special Section: Aberration-Corrected Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brown, K.L., Rothacker, F., Carey, D.C. & Iselin, Ch. (1983). TRANSPORT—A computer program for designing charged particle beam transport systems. SLAC-91, Rev. 3. Springfield, VA: National Technical Information Service, U.S. Department of Commerce. CrossRefGoogle Scholar
Dellby, N., Krivanek, O.L. & Murfitt, M.F. (2008). Optimized quadrupole-octupole C3/C5 aberration corrector for STEM. Phys Procedia 1, 179183.CrossRefGoogle Scholar
Dellby, N., Krivanek, O.L., Nellist, P.D., Batson, P.E. & Lupini, A.R. (2001). Progress in aberration-corrected scanning transmission electron microscopy. J Elec Microsc 50(3), 177185.Google ScholarPubMed
Haider, M., Müller, H., Uhlemann, S., Zach, J., Loebau, U. & Hoeschen, R. (2008). Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy 108, 167178.CrossRefGoogle ScholarPubMed
Haider, M., Uhlemann, S. & Zach, J. (2000). Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163175.CrossRefGoogle ScholarPubMed
Jia, C.L., Houben, L., Thust, A. & Barthel, J. (2010). On the benefit of the negative-spherical-aberration imaging technique for quantitative HRTEM. Ultramicroscopy 110, 500505.CrossRefGoogle Scholar
Kirkland, A.I., Meyer, R.R. & Shery Chang, L-Y. (2006). Local measurement and computational refinement of aberrations for HRTEM. Microsc Microanal 12, 461468.CrossRefGoogle ScholarPubMed
Kisielowski, C., Freitag, B., Bischoff, M., Van Lin, H., Lazar, S., Knippels, G., Tiemeijer, P., Van Der Stam, M., Von Harrach, S., Stekelenburg, M., Haider, M., Uhlemann, S., Müller, H., Hartel, P., Kabius, B., Miler, D., Petrov, I., Olson, E.A., Donchev, T., Kenik, E.A., Lupini, A.R., Bentley, J., Pennycook, S.J., Anderson, I.M., Minor, A.M., Schmid, A.K., Duden, T., Radmilovic, V., Ramasse, Q.M., Watanabe, M., Erni, R., Stach, E.A., Denes, P. & Dahmen, U. (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc Microanal 14, 469477.CrossRefGoogle ScholarPubMed
Krivanek, O.L., Corbin, G.J., Dellby, N., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S. & Woodruff, J.W. (2008a). An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179195.CrossRefGoogle ScholarPubMed
Krivanek, O.L., Dellby, N., Keyse, R.J., Murfitt, M.F., Own, C.S. & Szilagyi, Z.S. (2008b). Advances in aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. In Advances in Imaging and Electron Physics, Hawkes, P.W. (Ed.), vol. 153, pp. 141. New York: Academic Press.Google Scholar
Krivanek, O.L., Dellby, N. & Murfitt, M.F. (2008c). Aberration correction in electron microscopy. In Handbook of Charged Particle Optics, 2nd ed. Boca Raton, FL: CRC Press.Google Scholar
Krivanek, O.L., Ursin, J.P., Bacon, N.J., Corbin, G.C., Dellby, N., Hrncirik, P., Murfitt, M.F., Own, C.S. & Szilagyi, Z.S. (2009). High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy. Phil Trans R Soc A 367, 36833697.Google Scholar
Makino, K. & Berz, M. (2005). COSY INFINITY Version 9. Nucl Instrum Methods A 558, 346350.CrossRefGoogle Scholar
Müller, H., Uhlemann, S., Hartel, P. & Haider, M. (2006). Advancing the hexapole Cs-corrector for the scanning transmission electron microscope. Microsc Microanal 12, 442455.CrossRefGoogle ScholarPubMed
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A.Y., Sides, W.H. & Pennycook, S.J. (2004). Direct sub-angstrom imaging of a crystal lattice. Science 305, 17411742.CrossRefGoogle ScholarPubMed
Rose, H. (1971). Abbildungseigenschaften spharish korrigierter elektronenoptischer Achromate. Optik 33(1), 124.Google Scholar
Rose, H. (1981). Correction of aperture aberrations in magnetic systems with threefold symmetry. Nucl Instrum Methods 187, 187199.CrossRefGoogle Scholar
Rose, H. (1990). Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik 85(1), 1924.Google Scholar
Sawada, H., Sasaki, T., Hosokawa, F., Yuasa, S., Terao, M., Kawazoe, M., Nakamichi, T., Kaneyama, T., Kondo, Y., Kimoto, K. & Suenaga, K. (2010). Higher-order aberration corrector for an image-forming system in a transmission electron microscope. Ultramicroscopy 110, 958961.CrossRefGoogle Scholar
Scherzer, O. (1936). Über einige Fehler von Elektronenlinsen. Z Phys 101, 593603.CrossRefGoogle Scholar
Shao, Z. (1988). On the fifth-order aberration in a sextupole corrected probe-forming system. Rev Sci Instrum 59, 24292437.CrossRefGoogle Scholar
Tiemeijer, P.C., Bischoff, M., Freitag, B. & Kisielowski, C. (2008). Using a monochromator to improve the resolution in focal-series reconstructed TEM down to 0.5 Å. In Proc. EMC 2008, Aachen, Germany, Luysberg, M., Tillmann, K. & Weirich, T. (Eds.), vol. 1, pp. 5354.Google Scholar
Zhou, W., Pennycook, S.J. & Idrobo, J.-C. (2011). Localization of inelastic electron scattering in the low-loss energy regime. Ultramicroscopy [Epub ahead of print]. Available at http://dx.doi.org/10.1016/j.ultramic.2011.11.013.CrossRefGoogle Scholar