Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T18:22:01.089Z Has data issue: false hasContentIssue false

Toxicity Evaluation of Two Dental Composites: Three-Dimensional Confocal Laser Scanning Microscopy Time-Lapse Imaging of Cell Behavior

Published online by Cambridge University Press:  02 May 2013

Ghania Nina Attik*
Affiliation:
Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Lyon1, Villeurbanne, France
Nelly Pradelle-Plasse
Affiliation:
UFR d'Odontologie, Université Paris Diderot, APHP, Hôpital Rothschild, Service d'Odontologie, Paris, France
Doris Campos
Affiliation:
Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Lyon1, Villeurbanne, France
Pierre Colon
Affiliation:
UFR d'Odontologie, Université Paris Diderot, APHP, Hôpital Rothschild, Service d'Odontologie, Paris, France
Brigitte Grosgogeat
Affiliation:
Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Lyon1, Villeurbanne, France UFR d'Odontologie, Université Lyon1, Service de Consultations et de Traitements Dentaires, Hospices Civils de Lyon, Lyon, France
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

The purpose of this study was to investigate the in vitro biocompatibility of two dental composites (namely A and B) with similar chemical composition used for direct restoration using three-dimensional confocal laser scanning microscopy (CLSM) time-lapse imaging. Time-lapse imaging was performed on cultured human HGF-1 fibroblast-like cells after staining using Live/Dead®. Image analysis showed a higher mortality rate in the presence of composite A than composite B. The viability rate decreased in a time-dependent manner during the 5 h of exposure. Morphological alterations were associated with toxic effects; cells were enlarged and more rounded in the presence of composite A as shown by F-actin and cell nuclei staining. Resazurin assay was used to confirm the active potential of composites in cell metabolism; results showed severe cytotoxic effects in the presence of both no light-curing composites after 24 h of direct contact. However, extracts of polymerized composites induced a moderate decrease in cell metabolism after the same incubation period. Composite B was significantly better tolerated than composite A at all investigated end points and all time points. The finding confirmed that the used CLSM method was sufficiently sensitive to differentiate the biocompatibility behavior of two composites based on similar methacrylate monomers.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, S.A., Gogal, R.M. Jr. & Walsh, J.E. (1994). A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: An alternative to [3H]thymidine incorporation assay. J Immunol Methods 170, 211224.CrossRefGoogle ScholarPubMed
Al-Nasiry, S., Geusens, N., Hanssens, M., Luyten, C. & Pijnenborg, R. (2007). The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 22, 13041309.CrossRefGoogle ScholarPubMed
Aranha, A.M.F., Giro, E.M.A., Hebling, J., Lessa, F.C.R. & Costa, C.A. de S. (2010). Effects of light-curing time on the cytotoxicity of a restorative composite resin on odontoblast-like cells. J Appl Oral Sci 18, 461466.CrossRefGoogle ScholarPubMed
Ausiello, P., Cassese, A., Miele, C., Beguinot, F., Garcia-Godoy, F., Di Jeso, B. & Ulianich, L. (2011). Cytotoxicity of dental resin composites: An in vitro evaluation. J Appl Toxicol [doi:10.1002/jat.1765] (published online ahead of print). Google ScholarPubMed
Bakopoulou, A., Papadopoulos, T. & Garefis, P. (2009). Molecular toxicology of substances released from resin-based dental restorative materials. Int J Mol Sci 10, 38613899.CrossRefGoogle ScholarPubMed
Brambilla, E., Gagliani, M., Ionescu, A., Fadini, L. & García-Godoy, F. (2009). The influence of light-curing time on the bacterial colonization of resin composite surfaces. Dent Mater 25, 10671072.CrossRefGoogle ScholarPubMed
Bruder, J.M., Pfeiffer, Z.A., Ciriello, J.M., Horrigan, D.M., Wicks, N.L., Flaherty, B. & Oancea, E. (2012). Melanosomal dynamics assessed with a live-cell fluorescent melanosomal marker. PLoS One 7, e43465. CrossRefGoogle ScholarPubMed
Cao, T., Saw, T.Y., Heng, B.C., Liu, H., Yap, A.U.J. & Ng, M.L. (2005). Comparison of different test models for the assessment of cytotoxicity of composite resins. J Appl Toxicol 25, 101108.CrossRefGoogle ScholarPubMed
Chen, Y., Liang, C.-P., Liu, Y., Fischer, A.H., Parwani, A.V. & Pantanowitz, L. (2012). Review of advanced imaging techniques. J Pathol Inform 3, 22.CrossRefGoogle ScholarPubMed
D'Alpino, P.H.P., Pereira, J.C., Svizero, N.R., Rueggeberg, F.A. & Pashley, D.H. (2006). Use of fluorescent compounds in assessing bonded resin-based restorations: A literature review. J Dent 34, 623634.CrossRefGoogle ScholarPubMed
Ergun, G., Egilmez, F. & Yilmaz, S. (2011). Effect of reduced exposure times on the cytotoxicity of resin luting cements cured by high-power led. J Appl Oral Sci 19, 286292.CrossRefGoogle ScholarPubMed
Falconi, M., Teti, G., Zago, M., Pelotti, S., Breschi, L. & Mazzotti, G. (2007). Effects of HEMA on type I collagen protein in human gingival fibroblasts. Cell Biol Toxicol 23, 313322.CrossRefGoogle ScholarPubMed
Fields, R.D. & Lancaster, M.V. (1993). Dual-attribute continuous monitoring of cell proliferation/cytotoxicity. Am Biotechnol Lab 11, 4850.Google ScholarPubMed
Franz, A., König, F., Anglmayer, M., Rausch-Tan, X., Gille, G., Rausch, W.D., Lucas, T., Sperr, W. & Schedle, A. (2003). Cytotoxic effects of packable and nonpackable dental composites. Dent Mater 19, 382392.CrossRefGoogle ScholarPubMed
Geurtsen, W. (2000). Biocompatibility of resin-modified filling materials. Crit Rev Oral Biol Med 11, 333355.CrossRefGoogle ScholarPubMed
Geurtsen, W., Spahl, W. & Leyhausen, G. (1998). Residual monomer/additive release and variability in cytotoxicity of light-curing glass-ionomer cements and compomers. J Dent Res 77, 20122019.CrossRefGoogle ScholarPubMed
Goldberg, M. (2008). In vitro and in vivo studies on the toxicity of dental resin components: A review. Clin Oral Investig 12, 18.Google Scholar
Harorli, O.-T., Bayindir, Y.-Z., Altunkaynak, Z. & Tatar, A. (2009). Cytotoxic effects of TEGDMA on THP-1 cells in vitro . Med Oral Patol Oral Cir Bucal 14, e489–493.Google ScholarPubMed
Hassell, T.M. (1993). Tissues and cells of the periodontium. Periodontology 2000 3, 938.CrossRefGoogle ScholarPubMed
Hensten-Pettersen, A. (1998). Skin and mucosal reactions associated with dental materials. Eur J Oral Sci 106, 707712.CrossRefGoogle ScholarPubMed
Ishikawa-Ankerhold, H.C., Ankerhold, R. & Drummen, G.P.C. (2012). Advanced fluorescence microscopy techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17, 40474132.CrossRefGoogle ScholarPubMed
Issa, Y., Watts, D.C., Brunton, P.A., Waters, C.M. & Duxbury, A.J. (2004). Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro . Dent Mater 20, 1220.CrossRefGoogle ScholarPubMed
Jadhav, S., Hegde, V., Aher, G. & Fajandar, N. (2011). Influence of light curing units on failure of direct composite restorations. J Conserv Dent 14, 225227.Google Scholar
Jontell, M., Hanks, C.T., Bratel, J. & Bergenholtz, G. (1995). Effects of unpolymerized resin components on the function of accessory cells derived from the rat incisor pulp. J Dent Res 74, 11621167.Google Scholar
Kasten, F.H., Felder, S.M., Gettleman, L. & Alchediak, T. (1982). A model culture system with human gingival fibroblasts for evaluating the cytotoxicity of dental materials. In Vitro 18, 650660.CrossRefGoogle Scholar
Knezevic, A., Zeljezic, D., Kopjar, N. & Tarle, Z. (2009). Influence of curing mode intensities on cell culture cytotoxicity/genotoxicity. Am J Dent 22, 4348.Google ScholarPubMed
Krifka, S., Seidenader, C., Hiller, K.-A., Schmalz, G. & Schweikl, H. (2012). Oxidative stress and cytotoxicity generated by dental composites in human pulp cells. Clin Oral Investig 16, 215224.CrossRefGoogle ScholarPubMed
Louvet, J.-N., Attik, G., Dumas, D., Potier, O. & Pons, M.-N. (2011). Simultaneous Gram and viability staining on activated sludge exposed to erythromycin: 3D CLSM time-lapse imaging of bacterial disintegration. Int J Hyg Environ Health 214, 470477.CrossRefGoogle ScholarPubMed
McNicholl, B.P., McGrath, J.W. & Quinn, J.P. (2007). Development and application of a resazurin-based biomass activity test for activated sludge plant management. Water Res 41, 127133.CrossRefGoogle ScholarPubMed
Meriç, G., Dahl, J.E. & Ruyter, I.E. (2008). Cytotoxicity of silica-glass fiber reinforced composites. Dent Mater 24, 12011206.CrossRefGoogle ScholarPubMed
Modareszadeh, M.R., Chogle, S.A., Mickel, A.K., Jin, G., Kowsar, H., Salamat, N., Shaikh, S. & Qutbudin, S. (2011). Cytotoxicity of set polymer nanocomposite resin root-end filling materials. Int Endod J 44, 154161.CrossRefGoogle ScholarPubMed
Moharamzadeh, K., Van Noort, R., Brook, I.M. & Scutt, A.M. (2007). Cytotoxicity of resin monomers on human gingival fibroblasts and HaCaT keratinocytes. Dent Mater 23, 4044.CrossRefGoogle ScholarPubMed
Monteiro, G.Q.M., Souza, F.B., Pedrosa, R.F., Sales, G.C.F., Castro, C.M.M.B., Fraga, S.N., Galvão, B.H.A. & Braz, R. (2010). In vitro biological response to a self-adhesive resin cement under different curing strategies. J Biomed Mater Res B 92, 317321.CrossRefGoogle ScholarPubMed
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 65, 5563.Google Scholar
Neri, S., Mariani, E., Meneghetti, A., Cattini, L. & Facchini, A. (2001). Calcein-acetyoxymethyl cytotoxicity assay: Standardization of a method allowing additional analyses on recovered effector cells and supernatants. Clin Diagn Lab Immunol 8, 11311135.CrossRefGoogle ScholarPubMed
O'Brien, J., Wilson, I., Orton, T. & Pognan, F. (2000). Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267, 54215426.CrossRefGoogle ScholarPubMed
Okada, H. & Murakami, S. (1998). Cytokine expression in periodontal health and disease. Crit Rev Oral Biol Med 9, 248266.CrossRefGoogle ScholarPubMed
Paranjpe, A., Sung, E.C., Cacalano, N.A., Hume, W.R. & Jewett, A. (2008). N-acetyl cysteine protects pulp cells from resin toxins in vivo . J Dent Res 87, 537541.CrossRefGoogle ScholarPubMed
Polyzois, G.L. (1994). In vitro evaluation of dental materials. Clin Mater 16, 2160.CrossRefGoogle ScholarPubMed
Reichl, F.-X., Simon, S., Esters, M., Seiss, M., Kehe, K., Kleinsasser, N. & Hickel, R. (2006). Cytotoxicity of dental composite (co)monomers and the amalgam component Hg(2+) in human gingival fibroblasts. Arch Toxicol 80, 465472.CrossRefGoogle Scholar
Rueggeberg, F.A. (2011). State-of-the-art: Dental photocuring—A review. Dent Mater 27, 3952.CrossRefGoogle ScholarPubMed
Santerre, J.P., Shajii, L. & Leung, B.W. (2001). Relation of dental composite formuations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Crit Rev Oral Biol Med 12, 136151.CrossRefGoogle ScholarPubMed
Santini, A., Miletic, V., Swift, M.D. & Bradley, M. (2012). Degree of conversion and microhardness of TPO-containing resin-based composites cured by polywave and monowave LED units. J Dent 40, 577584.CrossRefGoogle ScholarPubMed
Schedle, A., Franz, A., Rausch-Fan, X., Spittler, A., Lucas, T., Samorapoompichit, P., Sperr, W. & Boltz-Nitulescu, G. (1998). Cytotoxic effects of dental composites, adhesive substances, compomers and cements. Dent Mater 14, 429440.Google Scholar
Schmid-Schwap, M., Franz, A., König, F., Bristela, M., Lucas, T., Piehslinger, E., Watts, D.C. & Schedle, A. (2009). Cytotoxicity of four categories of dental cements. Dent Mater 25, 360368.CrossRefGoogle ScholarPubMed
Schulz, S.D., König, A., Steinberg, T., Tomakidi, P., Hellwig, E. & Polydorou, O. (2012). Human gingival keratinocyte response to substances eluted from Silorane composite material reveal impact on cell behavior reflected by RNA levels and induction of apoptosis. Dent Mater 28, e135–142.CrossRefGoogle ScholarPubMed
Schweikl, H. & Schmalz, G. (1996). Toxicity parameters for cytotoxicity testing of dental materials in two different mammalian cell lines. Eur J Oral Sci 104, 292299.CrossRefGoogle ScholarPubMed
Segerström, S., Sandborgh-Englund, G. & Ruyter, E.I. (2011). Biological and physicochemical properties of carbon-graphite fibre-reinforced polymers intended for implant suprastructures. Eur J Oral Sci 119, 246252.CrossRefGoogle ScholarPubMed
Sigusch, B.W., Pflaum, T., Völpel, A., Gretsch, K., Hoy, S., Watts, D.C. & Jandt, K.D. (2012). Resin-composite cytotoxicity varies with shade and irradiance. Dent Mater 28, 312319.CrossRefGoogle ScholarPubMed
Sigusch, B.W., Völpel, A., Braun, I., Uhl, A. & Jandt, K.D. (2007). Influence of different light curing units on the cytotoxicity of various dental composites. Dent Mater 23, 13421348.CrossRefGoogle ScholarPubMed
Soheili Majd, E., Goldberg, M. & Stanislawski, L. (2003). In vitro effects of ascorbate and Trolox on the biocompatibility of dental restorative materials. Biomaterials 24, 39.CrossRefGoogle ScholarPubMed
Stoddart, M.J., Furlong, P.I., Simpson, A., Davies, C.M. & Richards, R.G. (2006). A comparison of non-radioactive methods for assessing viability in ex vivo cultured cancellous bone: Technical note. Eur Cell Mater 12, 1625.Google Scholar
Strasser, C., Grote, P., Schäuble, K., Ganz, M. & Ferrando-May, E. (2012). Regulation of nuclear envelope permeability in cell death and survival. Nucleus 3(6), 540551.CrossRefGoogle ScholarPubMed
Szep, S., Kunkel, A., Ronge, K. & Heidemann, D. (2002). Cytotoxicity of modern dentin adhesives—In vitro testing on gingival fibroblasts. J Biomed Mater Res 63, 5360.CrossRefGoogle ScholarPubMed
Urcan, E., Scherthan, H., Styllou, M., Haertel, U., Hickel, R. & Reichl, F.-X. (2010). Induction of DNA double-strand breaks in primary gingival fibroblasts by exposure to dental resin composites. Biomaterials 31, 20102014.CrossRefGoogle ScholarPubMed
Van Landuyt, K.L., Nawrot, T., Geebelen, B., De Munck, J., Snauwaert, J., Yoshihara, K., Scheers, H., Godderis, L., Hoet, P. & Van Meerbeek, B. (2011). How much do resin-based dental materials release? A meta-analytical approach. Dent Mater 27, 723747.CrossRefGoogle ScholarPubMed
Wataha, J.C., Lockwood, P.E., Bouillaguet, S. & Noda, M. (2003). In vitro biological response to core and flowable dental restorative materials. Dent Mater 19, 2531.CrossRefGoogle ScholarPubMed
White, J.G., Amos, W.B. & Fordham, M. (1987). An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol 105, 4148.CrossRefGoogle ScholarPubMed
Yoshino, F., Yoshida, A., Okada, E., Okada, Y., Maehata, Y., Miyamoto, C., Kishimoto, S., Otsuka, T., Nishimura, T. & Lee, M.C.-I. (2012). Dental resin curing blue light induced oxidative stress with reactive oxygen species production. J Photochem Photobiol B 114, 7378.Google Scholar