Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T14:14:08.346Z Has data issue: false hasContentIssue false

Thin-Film Phase Plates for Transmission Electron Microscopy Fabricated from Metallic Glasses

Published online by Cambridge University Press:  29 September 2016

Manuel Dries*
Affiliation:
Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT), Engesserstraße 7, D-76131 Karlsruhe, Germany
Simon Hettler
Affiliation:
Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT), Engesserstraße 7, D-76131 Karlsruhe, Germany
Tina Schulze
Affiliation:
Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT), Engesserstraße 7, D-76131 Karlsruhe, Germany
Winfried Send
Affiliation:
Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT), Engesserstraße 7, D-76131 Karlsruhe, Germany
Erich Müller
Affiliation:
Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT), Engesserstraße 7, D-76131 Karlsruhe, Germany
Reinhard Schneider
Affiliation:
Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT), Engesserstraße 7, D-76131 Karlsruhe, Germany
Dagmar Gerthsen
Affiliation:
Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT), Engesserstraße 7, D-76131 Karlsruhe, Germany
Yuansu Luo
Affiliation:
I. Physikalisches Institut, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
Konrad Samwer
Affiliation:
I. Physikalisches Institut, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
*
*Corresponding author.[email protected]
Get access

Abstract

Thin-film phase plates (PPs) have become an interesting tool to enhance the contrast of weak-phase objects in transmission electron microscopy (TEM). The thin film usually consists of amorphous carbon, which suffers from quick degeneration under the intense electron-beam illumination. Recent investigations have focused on the search for alternative materials with an improved material stability. This work presents thin-film PPs fabricated from metallic glass alloys, which are characterized by a high electrical conductivity and an amorphous structure. Thin films of the zirconium-based alloy Zr65.0Al7.5Cu27.5 (ZAC) were fabricated and their phase-shifting properties were evaluated. The ZAC film was investigated by different TEM techniques, which reveal beneficial properties compared with amorphous carbon PPs. Particularly favorable is the small probability for inelastic plasmon scattering, which results from the combined effect of a moderate inelastic mean free path and a reduced film thickness due to a high mean inner potential. Small probability plasmon scattering improves contrast transfer at high spatial frequencies, which makes the ZAC alloy a promising material for PP fabrication.

Type
Instrumentation and Techniques Development
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alloyeau, D., Hsieh, W.K., Anderson, E.H., Hilken, L., Benner, G., Meng, X., Chen, F.R. & Kisielowski, C. (2010). Imaging of soft and hard materials using a Boersch phase plate in a transmission electron microscope. Ultramicroscopy 110(5), 563570.CrossRefGoogle Scholar
Anishchenko, R.I. (1966). Calculation of the mean inner potential of a crystal in the statistical theory. Phys Status Solidi B 18(2), 923928.Google Scholar
Barton, B., Rhinow, D., Walter, A., Schröder, R., Benner, G., Majorovits, E., Matijevic, M., Niebel, H., Müller, H., Haider, M., Lacher, M., Schmitz, S., Holik, P. & Kühlbrandt, W. (2011). In-focus electron microscopy of frozen-hydrated biological samples with a Boersch phase plate. Ultramicroscopy 111(12), 16961705.CrossRefGoogle ScholarPubMed
Boersch, H. (1947). Über die Kontraste von Atomen im Elektronenmikroskop. Z Naturforsch A 2a, 615633.CrossRefGoogle Scholar
Danev, R., Buijsse, B., Khoshouei, M., Plitzko, J.M. & Baumeister, W. (2014). Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc Natl Acad Sci U S A 111(44), 1563515640.Google Scholar
Danev, R., Glaeser, R.M. & Nagayama, K. (2009). Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy. Ultramicroscopy 109(4), 312325.CrossRefGoogle ScholarPubMed
Danev, R., Kanamaru, S., Marko, M. & Nagayama, K. (2010). Zernike phase contrast cryo-electron tomography. J Struct Biol 171(2), 174181.Google Scholar
Danev, R. & Nagayama, K. (2001). Complex observation in electron microscopy. II. Direct visualization of phases and amplitudes of exit wave functions. J Phys Soc Jpn 70(3), 696702.Google Scholar
Danev, R. & Nagayama, K. (2004). Complex observation in electron microscopy: IV. Reconstruction of complex object wave from conventional and half plane phase plate image pair. J Phys Soc Jpn 73(10), 27182724.CrossRefGoogle Scholar
Danev, R. & Nagayama, K. (2008). Single particle analysis based on Zernike phase contrast transmission electron microscopy. J Struct Biol 161(2), 211218.CrossRefGoogle ScholarPubMed
Danev, R., Okawara, H., Usuda, N., Kametani, K. & Nagayama, K. (2002). A novel phase-contrast transmission electron microscopy producing high-contrast topographic images of weak objects. J Biol Phys 28(4), 627635.CrossRefGoogle ScholarPubMed
Dries, M., Hettler, S., Gamm, B., Müller, E., Send, W., Müller, K., Rosenauer, A. & Gerthsen, D. (2014). A nanocrystalline Hilbert phase-plate for phase-contrast transmission electron microscopy. Ultramicroscopy 139, 2937.Google Scholar
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed. Berlin, Heidelberg: Springer.Google Scholar
Egerton, R.F., Li, P. & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35(6), 399409.Google Scholar
Giannuzzi, L.A. & Stevie, F.A. (1999). A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30(3), 197204.Google Scholar
Glaeser, R.M. (2013). Invited review article: Methods for imaging weak-phase objects in electron microscopy. Rev Sci Instrum 84(11), 111101.Google Scholar
Hettler, S., Wagner, J., Dries, M., Oster, M., Wacker, C., Schröder, R.R. & Gerthsen, D. (2015). On the role of inelastic scattering in phase-plate transmission electron microscopy. Ultramicroscopy 155, 2741.CrossRefGoogle ScholarPubMed
Iakoubovskii, K., Mitsuishi, K., Nakayama, Y. & Furuya, K. (2008). Thickness measurements with electron energy loss spectroscopy. Microsc Res Tech 71(8), 626631.CrossRefGoogle ScholarPubMed
Lichte, H. & Lehmann, M. (2008). Electron holography – Basics and applications. Rep Prog Phys 71(1), 016102.CrossRefGoogle Scholar
Malac, M., Beleggia, M., Kawasaki, M., Li, P. & Egerton, R.F. (2012). Convenient contrast enhancement by a hole-free phase plate. Ultramicroscopy 118, 7789.Google Scholar
Malis, T., Cheng, S.C. & Egerton, R.F. (1988). EELS log-ratio technique for specimen-thickness measurement in the TEM. J Electron Microsc Tech 8(2), 193200.Google Scholar
Marko, M., Leith, A., Hsieh, C. & Danev, R. (2011). Retrofit implementation of Zernike phase plate imaging for cryo-TEM. J Struct Biol 174(2), 400412.CrossRefGoogle ScholarPubMed
Marko, M., Meng, X., Hsieh, C., Roussie, J. & Striemer, C. (2013). Methods for testing Zernike phase plates and a report on silicon-based phase plates with reduced charging and improved ageing characteristics. J Struct Biol 184(2), 237244.CrossRefGoogle Scholar
Mayr, S.G. (2005). The kinetics of internal structural relaxation of metallic glasses probed with ion beams and resistivity measurements. J Appl Phys 97(9), 096103.Google Scholar
McCartney, M.R. & Smith, D.J. (2007). Electron holography: Phase imaging with nanometer resolution. Annu Rev Mater Res 37, 729767.Google Scholar
Meltzman, H., Kauffmann, Y., Thangadurai, P., Drozdov, M., Baram, M., Brandon, D. & Kaplan, W.D. (2009). An experimental method for calibration of the plasmon mean free path. J Microsc 236(3), 165173.CrossRefGoogle ScholarPubMed
Morgan, M. (1971). Electrical conduction in amorphous carbon films. Thin Solid Films 7(5), 313323.CrossRefGoogle Scholar
Nagayama, K. (1999). Complex observation in electron microscopy. I. Basic scheme to surpass the Scherzer limit. J Phys Soc Jpn 68(3), 811822.Google Scholar
Radi, G. (1970). Complex lattice potentials in electron diffraction calculated for a number of crystals. Acta Crystallogr A Found Adv 26(1), 4156.Google Scholar
Rambousky, R., Moske, M. & Samwer, K. (1995). Structural relaxation and viscous flow in amorphous ZrAlCu. Z Phys B Con Mat 99(3), 387391.CrossRefGoogle Scholar
Reimer, L. & Kohl, H. (2008). Transmission Electron Microscopy – Physics of Image Formation, Springer Series in Optical Sciences 36 , 5th ed. Berlin, Heidelberg: Springer.Google Scholar
Schultheiß, K., Pérez-Willard, F., Barton, B., Gerthsen, D. & Schröder, R.R. (2006). Fabrication of a Boersch phase plate for phase contrast imaging in a transmission electron microscope. Rev Sci Instrum 77(3), 033701.Google Scholar
Schweiss, D.T., Hwang, J. & Voyles, P.M. (2013). Inelastic and elastic mean free paths from FIB samples of metallic glasses. Ultramicroscopy 124, 612.Google Scholar
Willasch, D. (1975). High resolution electron microscopy with profiled phase plates. Optik 44, 1736.Google Scholar