Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T13:09:43.407Z Has data issue: false hasContentIssue false

Textural and Mineralogical Analysis of Volcanic Rocks by µ-XRF Mapping

Published online by Cambridge University Press:  10 May 2016

Luigi Germinario*
Affiliation:
Dipartimento di Geoscienze, Università degli Studi di Padova, Via Gradenigo 6, 35131 Padova, Italy
Roberto Cossio
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, 10125 Torino, Italy
Lara Maritan
Affiliation:
Dipartimento di Geoscienze, Università degli Studi di Padova, Via Gradenigo 6, 35131 Padova, Italy
Alessandro Borghi
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, 10125 Torino, Italy
Claudio Mazzoli
Affiliation:
Dipartimento di Geoscienze, Università degli Studi di Padova, Via Gradenigo 6, 35131 Padova, Italy
*
*Corresponding author. [email protected]
Get access

Abstract

In this study, µ-XRF was applied as a novel surface technique for quick acquisition of elemental X-ray maps of rocks, image analysis of which provides quantitative information on texture and rock-forming minerals. Bench-top µ-XRF is cost-effective, fast, and non-destructive, can be applied to both large (up to a few tens of cm) and fragile samples, and yields major and trace element analysis with good sensitivity. Here, X-ray mapping was performed with a resolution of 103.5 µm and spot size of 30 µm over sample areas of about 5×4 cm of Euganean trachyte, a volcanic porphyritic rock from the Euganean Hills (NE Italy) traditionally used in cultural heritage. The relative abundance of phenocrysts and groundmass, as well as the size and shape of the various mineral phases, were obtained from image analysis of the elemental maps. The quantified petrographic features allowed identification of various extraction sites, revealing an objective method for archaeometric provenance studies exploiting µ-XRF imaging.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angelici, D., Borghi, A., Chiarelli, F., Cossio, R., Gariani, G., Lo Giudice, A., Re, A., Pratesi, G. & Vaggelli, G. (2015). μ-XRF analysis of trace elements in lapis lazuli-forming minerals for a provenance study. Microsc Microanal 21, 526533.Google Scholar
Antonelli, F. & Lazzarini, L. (2010). Mediterranean trade of the most widespread Roman volcanic millstones from Italy and petrochemical markers of their raw materials. J Archaeol Sci 37, 20812092.Google Scholar
Antonelli, F. & Lazzarini, L. (2012). The first archaeometric characterization of Roman millstones found in the Aquileia archaeological site (Udine, Italy). Archaeometry 54(1), 117.Google Scholar
Baker, D.R., Mancini, L., Polacci, M., Higgins, M.D., Gualda, G.A.R., Hill, R.J. & Rivers, M.L. (2012). An introduction to the application of X-ray microtomography to the three-dimensional study of igneous rocks. Lithos 148, 262276.Google Scholar
Behrends, T. & Kleingeld, P. (2009). Bench-top micro-XRF – a useful apparatus for geochemists? Geochemical News 138, 15.Google Scholar
Capedri, S., Grandi, R. & Venturelli, G. (2003). Trachytes used for paving Roman roads in the Po Plain: characterization by petrographic and chemical parameters and provenance of flagstones. J Archaeol Sci 30, 491509.Google Scholar
Capedri, S. & Venturelli, G. (2003). Trachytes employed for funerary artefacts in the Roman Colonies Regium Lepidi (Reggio Emilia) and Mutina (Modena) (Italy): provenance inferred by petrographic and chemical parameters and by magnetic susceptibility. J Cult Herit 4, 319328.Google Scholar
Capedri, S. & Venturelli, G. (2005). Provenance determination of trachytic lavas, employed as blocks in the Romanesque cathedral of Modena (Northern Italy), using magnetic susceptibility, and petrographic and chemical parameters. J Cult Herit 6, 719.Google Scholar
Capedri, S., Venturelli, G. & Grandi, R. (2000). Euganean trachytes: discrimination of quarried sites by petrographic and chemical parameters and by magnetic susceptibility and its bearing on the provenance of stones of ancient artefacts. J Cult Herit 1, 341364.Google Scholar
Cattani, M., Lazzarini, L. & Falcone, R. (1997). Macine protostoriche dall’Emilia e dal Veneto: note archeologiche, caratterizzazione chimico-petrografica e determinazione della provenienza. Padusa 31, 105137.Google Scholar
De Vecchi, G.P., Gregnanin, A. & Piccirillo, E.M. (1976). Tertiary volcanism in the Veneto: magmatology, petrogenesis and geodynamic implications. Geologische Rundschau 65, 701710.Google Scholar
Haschke, M., Rossek, U., Tagle, R. & Waldschläger, U. (2012). Fast elemental mapping with micro-XRF. Adv X Ray Anal 55, 286298.Google Scholar
Higgins, M.D. (2000). Measurement of crystal size distributions. Am Mineral 85, 11051116.Google Scholar
Higgins, M.D. (2006). Quantitative textural measurements in igneous and metamorphic petrology. New York: Cambridge University Press.Google Scholar
Janssens, K. (2004). X-ray based methods of analysis. In Non-destructive microanalysis of cultural heritage materials (Comprehensive Analytical Chemistry, Vol. XLII Janssens, K. & Van Grieken, R. (Eds.), pp. 129226. Amsterdam: Elsevier.Google Scholar
Janssens, K., Vittiglio, G., Deraedt, I., Aerts, A., Vekemans, B., Vincze, L., Wei, F., Deryck, I., Schalm, O., Adams, F., Rindby, A., Knöchel, A., Simionovici, A. & Snigirev, A. (2000). Use of microscopic XRF for non-destructive analysis in art and archaeometry. X-Ray Spectrom 29, 7391.Google Scholar
Jerram, D.A. & Higgins, M.D. (2007). 3D analysis of rock textures: quantifying igneous microstructures. Elements 3, 239245.Google Scholar
Jerram, D.A. & Kent, A.J.R. (2006). An overview of modern trends in petrography: Textural and microanalysis of igneous rocks. J Volcanol Geoth Res 154, 79.Google Scholar
Kanngießer, B., Malzer, W., Mantouvalou, I., Sokaras, D. & Karydas, A.G. (2012). A deep view in cultural heritage – confocal micro X-ray spectroscopy for depth resolved elemental analysis. Appl Phys A 106, 325338.Google Scholar
Lindqvist, J.E. & Åkesson, U. (2001). Image analysis applied to engineering geology, a literature review. Bull Eng Geol Environ 60, 117122.Google Scholar
Maloy, A.K. & Treiman, A.H. (2007). Evaluation of image classification routines for determining modal mineralogy of rocks from X-ray maps. Am Mineral 92, 17811788.Google Scholar
Malzer, W. & Kanngießer, B. (2005). A model for the confocal volume of 3D micro X-ray fluorescence spectrometer. Spectrochim Acta Part B 60, 13341341.Google Scholar
Mantouvalou, I., Wolff, T., Hahn, O., Rabin, I., Lühl, L., Pagels, M., Malzer, W. & Kanngiesser, B. (2011). 3D micro-XRF for cultural heritage objects: new analysis strategies for the investigation of the Dead Sea scrolls. Analy Chem 83, 63086315.Google Scholar
Maritan, L., Mazzoli, C., Sassi, R., Speranza, F., Zanco, A. & Zanovello, P. (2013). Trachyte from the Roman aqueducts of Padua and Este (north-east Italy): A provenance study based on petrography, chemistry and magnetic susceptibility. Eur J Mineral 25, 415427.Google Scholar
Mera, M.F., Rubio, M., Pérez, C.A., Galván, V. & Germanier, A. (2015). SR μXRF and XRD study of the spatial distribution and mineralogical composition of Pb and Sb species in weathering crust of corroded bullets of hunting fields. Microchem J 119, 114122.Google Scholar
Milani, L., Beccaluva, L. & Coltorti, M. (1999). Petrogenesis and evolution of the Euganean Magmatic Complex, Veneto Region, North-East Italy. Eur J Mineral 11, 379399.Google Scholar
Ozturk, C.A. & Nasuf, E. (2013). Strength classification of rock material based on textural properties. Tunn Undergr Sp Tech 37, 4554.Google Scholar
Previato, C., Bonetto, J., Mazzoli, C. & Maritan, L. (2014). Aquileia e le cave delle regioni alto-adriatiche: il caso della trachite euganea. In Arqueología de la construcción IV. Las canteras en el mundo antiguo: sistemas de explotación y procesos productivos, Bonetto, J., Camporeale, S. & Pizzo, A. (Eds.), pp. 149166. Mérida: CSIC.Google Scholar
Přikryl, R. (2006). Assessment of rock geomechanical quality by quantitative rock fabric coefficients: Limitations and possible source of misinterpretations. Eng Geol 87, 149162.Google Scholar
Renzulli, A., Antonelli, F., Santi, P., Busdraghi, P. & Luni, M. (1999). Provenance determination of lava flagstones from the Roman “Via Consolare Flaminia” pavement (central Italy) using petrological investigations. Archaeometry 41(2), 209226.Google Scholar
Renzulli, A., Santi, P., Nappi, G., Luni, M. & Vitali, D. (2002 a). Provenance and trade of volcanic rock millstones from Etruscan-Celtic and Roman archaeological sites in Central Italy. Eur J Mineral 14, 175183.Google Scholar
Renzulli, A., Santi, P., Serri, G. & Luni, M. (2002 b). The Euganean trachyte flagstones (‘basoli’) used by the Romans along the mid-Adriatic coast (Marche, central Italy): an archaeometric study. Period Mineral 71, 189201.Google Scholar
Rindby, A. & Janssens, K. (2002). Microbeam XRF. In Handbook of X-Ray Spectrometry, Van Grieken, R.E. & Markowicz, A.A. (Eds.), pp. 631718. New York: Marcel Dekker.Google Scholar
Santi, P. & Renzulli, A. (2006). Italian volcanoes as landmarks for the spreading of trade networks during the Etruscan and Roman periods: The millstones and flagstones case study. Acta Vulcanologica 18(1–2), 133140.Google Scholar
Steiger, M., Charola, A.E. & Sterflinger, K. (2014). Weathering and deterioration. In Stone in Architecture. Properties, Durab, 5th ed. Siegesmund, S. & Snethlage, R. (Eds.), pp. 225316. Berlin: Springer.Google Scholar
Tarquini, S. & Armienti, P. (2003). Quick determination of crystal size distributions of rocks by means of a color scanner. Image Anal Stereol 22, 2734.Google Scholar
Tarquini, S. & Favalli, M. (2010). A microscopic information system (MIS) for petrographic analysis. Comp Geosci 36, 665674.Google Scholar
Vaggelli, G. & Cossio, R. (2012). µ-XRF analysis of glasses: a non-destructive utility for cultural heritage applications. Analyst 137, 662667.Google Scholar
Vaggelli, G., Lovera, V., Cossio, R. & Mirti, P. (2013). Islamic glass weights from Egypt. A systematic study by non-destructive μ-XRF technique. J Non-Cryst Solids 363, 96102.Google Scholar
Whitney, D.L. & Evans, B.W. (2010). Abbreviations for names of rock-forming minerals. Am Mineral 95, 185187.Google Scholar