No CrossRef data available.
Article contents
TEM Study of Amorphous Silicon Recrystallization
Published online by Cambridge University Press: 02 July 2020
Extract
Recently there has been increasing interest in nickel induced lateral recrystallization of amorphous silicon because of its potential to improve device performance and to lower the thermal budget during processing. The hypothesis is that the formation of nickel silicide provides a low energy nucleus for the recrystallization of amorphous silicon. The silicide, moving into a-Si, leaves crystalline silicon behind.1 The grains formed, therefore, tend to elongated. In this paper, we attempt to use TEM to investigate in detail the nickel assisted lateral crystallization of amorphous silicon. The sample was prepared by first depositing a 1000A thick low temperature, oxide layer, LTO, on Corning 1737 glass. A 1000A thick amorphous silicon layer, a-Si, and 1000A thick a-Si were deposited subsequently. The sample was pattern and etched with hydrofluoric acid to form lOum x lOum holes in the oxide layer. Next, 200A of nickel was evaporated onto the sample, followed by a 600°C, 6 hours anneal to induce lateral recrystallization.
- Type
- Defects in Semiconductors
- Information
- Copyright
- Copyright © Microscopy Society of America