Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T13:53:00.507Z Has data issue: false hasContentIssue false

Study of the Changes in Insoluble Polysaccharides during Pollen Development in Rice (Oryza sativa L.) by Microscopic Multispectral Imaging

Published online by Cambridge University Press:  02 July 2010

Shunan Liu
Affiliation:
The Key Laboratory of MOE for Plant Developmental Biology, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China College of Life Sciences, Huazhong Normal University, Wuhan 430079, P.R. China
Lei Pan
Affiliation:
The Key Laboratory of MOE for Plant Developmental Biology, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
Qiongshui Wu
Affiliation:
Scientific Instrument Engineering Research Center, Electronic Information School, Wuhan University, Wuhan 430072, P.R. China
Yaojun Hu
Affiliation:
College of Life Sciences, Hunan University of Science and Technology, Xiangtan City 411201, Hunan Province, P.R. China
Xiaojun Chen
Affiliation:
The Key Laboratory of MOE for Plant Developmental Biology, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
Yi Ding*
Affiliation:
The Key Laboratory of MOE for Plant Developmental Biology, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Multispectral analysis combined with the Periodic Acid-Schiff method was used to investigate cytological features of insoluble polysaccharides and changes in total insoluble polysaccharide content (TPC) during pollen development in rice, including four cytoplasmic male sterility lines (MSLs) and their corresponding fertility-maintaining lines (FMLs). The multispectral curves of the relative transmittance value (RTV) and the images of developing pollen cells were obtained across a range of successive wavelengths (400–720 nm). A minimum RTV was found near 550 nm indicating an absorption peak of the TPC. Thus, the TPC was measured using the RTV of 550 nm. In the four FMLs, the minimum TPC of developing pollen cells occurred at the late microspore stage, while the maximum TPC occurred at the mature pollen grain stage. The TPC levels of pollen cells were significantly higher in the four FMLs than in their corresponding MSLs during and after pollen abortion. Notably, a steep decrease of multispectral curves at 420 nm appeared before the occurrence of abortion, implying a marker associated with pollen abortion in rice. Our results will be helpful for exploring the changes in TPC during pollen ontogenesis in rice and provide a novel method for the study of bio-macromolecules.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bhandari, N.N. (1984). The microsporangium. In Embryology of angiosperms, Johri, B.M. (Ed.), pp. 53121. Berlin, Heidelberg, New York: Springer Press.CrossRefGoogle Scholar
Chen, C., Xu, Y., Ma, H. & Chong, K. (2005a). Cell biological characterization of male meiosis and pollen development in rice. J Integr Plant Biol 47, 734744.CrossRefGoogle Scholar
Chen, X.J., Liu, S.N., Wei, L., Hu, Y.J., Yu, J.H., Zhao, J. & Ding, Y. (2005b). The calcium distribution in the anther of cytoplasmic male sterile line of yunnan purple rice during anther development. J Wuhan Botanical Res 23, 101106 (in Chinese).Google Scholar
Clement, C. & Audran, J.C. (1995). Anther wall layers control pollen sugar nutrition in Lilium. Protoplasma 187, 172181.CrossRefGoogle Scholar
Clement, C., Burrus, M. & Audran, J.C. (1996). Floral organ growth and carbohydrate content during pollen development in Lilium. Am J Bot 83, 459469.CrossRefGoogle Scholar
Clement, C., Chavant, L., Burrus, M. & Audran, J.C. (1994). Anther starch variations in Lilium during pollen development. Sex Plant Reprod 7, 347356.CrossRefGoogle Scholar
Datta, R., Chamusco, K.C. & Chourey, P.S. (2002). Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiol 130, 16451656.CrossRefGoogle ScholarPubMed
Dorritie, K., Montagna, C. & Difilippantonio, M.J. (2004). Advanced molecular cytogenetics in human and mouse. Expert Rev Mol Diagn 4, 663676.CrossRefGoogle ScholarPubMed
Han, M.J., Jung, K.H., Yi, G., Lee, D.Y. & An, G. (2006). Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol 47, 14571472.CrossRefGoogle ScholarPubMed
Hilgenfeld, E., Padilla-Nash, H., McNeil, N., Knutsen, T., Montagna, C., Tchinda, J., Horst, J., Ludwig, W.D., Serve, H., Buchner, T., Berdel, W.E., Schrock, E. & Ried, T. (2001). Spectral karyotyping and fluorescence in situ hybridization detect novel chromosomal aberrations, a recurring involvement of chromosome 21 and amplification of the MYC oncogene in acute myeloid leukaemia M2. Br J Haematol 113, 305317.CrossRefGoogle ScholarPubMed
Hu, Y.J., Wu, Q.S., Liu, S.N., We, L., Chen, X.J., Yan, Z.X., Yu, J.H., Zeng, L.B. & Ding, Y. (2005). Study of rice pollen grains by multispectral imaging microscopy. Microsc Res Tech 68, 335346.CrossRefGoogle ScholarPubMed
Imin, N., Kerim, T., Weinman, J.J. & Rolfe, B.G. (2006). Low temperature treatment at the young microspore stage induces protein changes in rice anthers. Mol Cell Proteomics 5, 274292.CrossRefGoogle Scholar
Itoh, J., Nonomura, K., Ikeda, K., Yamaki, S., Inukai, Y., Yamagishi, H, Kitano, H. & Nagato, Y. (2005). Rice plant development: From zygote to spikelet. Plant Cell Physiol 46, 2347.CrossRefGoogle ScholarPubMed
Khait, O., Smirnov, S. & Tran, C.D. (2001). Multispectral imaging microscope with millisecond time resolution. Anal Chem 73, 732739.CrossRefGoogle ScholarPubMed
Kohen, E., Gatt, S. & Schachtschabel, A. (2000). Microspectrofluorometry and fluorescence imaging in the study of human cytopathology. Microsc Res Tech 51, 469480.3.0.CO;2-4>CrossRefGoogle Scholar
Levenson, R.M. (2004). Spectral imaging and pathology: Seeing more. Lab Med 35, 244252.CrossRefGoogle Scholar
Levenson, R.M. & Farkas, D.L. (1997). Digital spectral imaging for histopathology and cytopathology. Proc SPIE 2983, 123135.CrossRefGoogle Scholar
Liyanage, M., Coleman, A., Manoir, S.D., Veldman, T., McCormack, S., Dickson, R.B., Barlow, C., Wynshaw-Boeis, A., Janz, S., Wienberg, J., Ferguson-Smith, M.A., Schröck, E. & Ried, T. (1996). Multicolour spectral karyotyping of mouse chromosomes. Nat Genet 14, 312315.CrossRefGoogle ScholarPubMed
Maria, S.C., Marquez, J. & Juan, S.C. (1995). Pollen grain and Ubisch body development in Plantanus acerifoli. Rev Palaeobot Palynol 85, 6384.Google Scholar
McManus, J.F.A. (1948). Histological and histochemical uses of periodic acid. Stain Technol 23, 99108.CrossRefGoogle ScholarPubMed
Noher de Halac, I., Fama, G. & Cismondi, I.A. (1992). Changes in lipids and polysaccharides during pollen ontogeny in Oenothera anthers. Sex Plant Reprod 5, 110116.CrossRefGoogle Scholar
Nonomura, K., Miyoshi, K., Eiguchi, M., Suzuki, T., Miyao, A., Hirochika, H. & Kurata, N. (2003). The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell 15, 17281739.CrossRefGoogle ScholarPubMed
O'Brien, T.P. & McCully, N.E. (1981). The Study of Plant Structure: Principles and Selected Methods. Melbourne, Australia: Termarcarphi Pty.Google Scholar
Pacini, E. (1996). Types and meaning of pollen carbohydrate reserves. Sex Plant Reprod 9, 362366.CrossRefGoogle Scholar
Pacini, E., Guarnieri, M. & Nepi, M. (2006). Pollen carbohydrates and water content during development, presentation and dispersal: A short review. Protoplasma 228, 7377.CrossRefGoogle ScholarPubMed
Pacini, E. & Viegi, L. (1995). Total polysaccharide content of developing pollen in two angiosperm species. Grana 34, 237241.CrossRefGoogle Scholar
Pardi, M.L., Viegi, L., Renzoni, G.C., Franchi, G.G. & Pacini, E. (1996). Effects of acidity on the insoluble polysaccharide content of germinating pollen of Pinus pinea L. and Pinus pinaster Aiton. Grana 35, 240247.CrossRefGoogle Scholar
Raghavan, V. (1988). Anther and pollen development in rice (Oryza sativa). Am J Bot 75, 183196.CrossRefGoogle Scholar
Schrock, E., Manoir, S.D., Veldman, T., Schoell, B., Wienberg, J., Ferguson-Smith, M.A., Ning, Y., Ledbetter, D.H., Bar-Am, I., Soenksen, D., Garini, Y. & Ried, T. (1996). Multicolor spectral karyotyping of human chromosomes. Science 273, 494497.CrossRefGoogle ScholarPubMed
Speranza, A., Calzoni, G.L. & Pacini, E. (1997). Occurrence of mono- or disaccharides and polysaccharide reserves in mature pollen grains. Sex Plant Reprod 10, 110115.CrossRefGoogle Scholar
Sun, T.N., Ye, M.W., Wang, M.Q. & Chen, K.C. (1996). Study on development process of microspore in three male sterile rice. J Wuhan Univ (Nat Sci Ed) 42, 733739 (in Chinese).Google Scholar
Swinehart, D.F. (1962). The Beer-Lambert Law. J Chem Educ 39, 333335.CrossRefGoogle Scholar
Veldman, T., Vignon, C., Schrock, E., Rowley, J.D. & Ried, T. (1997). Hidden chromosome abnormalities in haematological malignancies detected by multicolour spectral karyotyping. Nat Genet 15, 406410.CrossRefGoogle ScholarPubMed
Wada, T., Ogawa, K., Ito, T., Suzuki, H. & Takeoka, Y. (1992). Light microscopic observations on pollen and anther development in rice (Oryza sativa L.). Jpn J Crop Sci 1, 136144.CrossRefGoogle Scholar
Xie, C.T., Yang, Y.H., Qiu, Y.L., Zhu, X.Y. & Tian, H.Q. (2005). Cytochemical investigation of genic male-sterility in Chinese cabbage. Sex Plant Reprod 18, 7580.CrossRefGoogle Scholar
Yang, H.Y. (2005). Rice Reproductive Biology, pp. 3741. Hangzhou, P.R. China: Zhejiang University Press (in Chinese).Google Scholar
Zeng, L.B., Wu, Q.S., Ke, H.Y., Hong, H., Hu, Y.J. & Ding, Y. (2005). Novel multispectral imaging microscope with applications to biomedicine. Proc. SPIE 5699, 129140.CrossRefGoogle Scholar
Zhu, Q.H., Ramm, K., Shivakkumar, R., Dennis, E.S. & Upadhyaya, N.M. (2004). The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol 135, 15141525.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Liu Supplementary Material

Figures.pdf

Download Liu Supplementary Material(PDF)
PDF 76.2 KB