No CrossRef data available.
Article contents
Structure of a Recombinant Gap Junction Channel at 7Å Resolution
Published online by Cambridge University Press: 02 July 2020
Extract
Gap junction membrane channels mediate the electrical and metabolic coupling between cells. The channels are formed by the end-to-end docking of two hemichannels (connexons), each of which is formed by a hexameric cluster of protein subunits (connexins). The principal gap junction protein in the heart, α1 connexin (also designated Cx43), mediates action potential propagation between cells in order to synchronize cardiac contraction.
We recently utilized electron cryo-microscopy and image analysis to examine frozen-hydrated two-dimensional (2D) crystals of a recombinant, truncated α1- connexin (α1Cx263T). The projection map at 7Å resolution revealed that each 30kD connexin subunit has a transmembrane α-helix that lines the aqueous pore and a second α-helix in close contact with the membrane lipids [Nature Struct. Biol. 4: 39-43 (1997)]. The distribution of densities allowed us to propose a model in which the two apposing connexons that form the channel are staggered by ∼30°. Furthermore, apparent non-crystallographic twofold axes predicted that the two apposing connexons adopt identical conformations.
- Type
- High Resolution Protein Structures from Electron Crystallography
- Information
- Copyright
- Copyright © Microscopy Society of America