Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T13:18:18.235Z Has data issue: false hasContentIssue false

Structure and Sense Organs of Ovipositors of an Endoparasitoid Aprostocetus causalis and an Ectoparasitoid Quadrastichus mendeli in Leptocybe spp.

Published online by Cambridge University Press:  04 February 2019

Zong-You Huang
Affiliation:
Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
Si-Yan Li
Affiliation:
Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
Wen Lu
Affiliation:
Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
Xia-Lin Zheng*
Affiliation:
Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
*
*Author for correspondence: Xia-Lin Zheng, E-mail: [email protected]
Get access

Abstract

Little is known of the olfactory mechanisms of host detection in the ovipositors of endoparasitoids and ectoparasitoids. An endoparasitoid Aprostocetus causalis La Salle & Wu (Hymenoptera: Eulophidae) and an ectoparasitoid Quadrastichus mendeli Kim & La Salle (Hymenoptera: Eulophidae: Tetrastichinae) are the two parasitoids of the eucalyptus gall wasp Leptocybe spp. Structures and sense organs of ovipositors of A. causalis and Q. mendeli were studied using scanning and transmission electron microscopy, which provided essential information for exploring the mechanism of host detection by endoparasitoid and ectoparasitoid. The ovipositors of two parasitoids consisted of the first and second valvulae and ended in a pointed tip. There were three types of microtrichia, two types of sensilla chaetica, and one type of sensilla campaniformia on the ovipositors of A. causalis and Q. mendeli. However, Q. mendeli has the fourth type of microtrichia on the ovipositor. The morphology, types, distribution, length, and width of these sensilla and microtrichia were described, and their possible functions are discussed in conjunction with the stinging, oviposition, and the host selection process.

Type
Micrographia
Copyright
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, T, Zhang, TT, He, KL, Bai, SX & Wang, ZY (2013). Sense organs on the ovipositor of Macrocentrus cingulum Brischke (Hymenoptera: Braconidae): Their probable role in stinging, oviposition and host selection process. J Asia-Pacific Entomol 16, 343348.Google Scholar
Altner, HT, Shaller-Selzer, L, Stetter, H & Wohlrab, I (1983). Poreless sensilla with inflexible sockets: A comparative study of a fundamental type of insect sensilla probably comprising thermo- and hygroreceptors. Cell Tissue Res 234, 279307.Google Scholar
Austin, AD & Field, TO (1997). The ovipositor system of the scelionid and platygastrid wasps (Hymenoptera: Platygastroidea): Comparative morphology and phylogenetic implications. Invert Taxon 11, 187.Google Scholar
Belshaw, R, Grafen, A & Quicke, DLJ (2003). Inferring life history from ovipositor morphology in parasitoid wasps using phylogenetic regression and discriminant analysis. Zool J Linn Soc 139, 213228.Google Scholar
Brown, PE & Anderson, M (1998). Morphology and ultrastructure of sense organs on the ovipositor of Trybliographa rapae, a parasitoid of the cabbage root fly. J Insect Physiol 44, 10171025.Google Scholar
Bush, SJ, Dittrich-Schröder, G, Neser, S, Gevers, C, Baffoe, KO & Slippers, B (2017). First record of Quadrastichus mendeli a parasitoid of Leptocybe invasa in South Africa. South For 80, 13.Google Scholar
Cônsoli, FL, Kitajima, EW & Postali Parra, JR (1999). Sensilla on the antenna and ovipositor of the parasitic wasps Trichogramma galloi Zucchi and T. pretiosum riley (Hymenoptera: Trichogrammatidae). Microsc Res Tech 45, 313324.Google Scholar
De Clercq, P, Mason, PG & Babendreier, D (2011). Benefits and risks of exotic biological control agents. BioControl 56, 681698.Google Scholar
Dweck, HKM, Gadallah, NS & Darwish, E (2008). Structure and sensory equipment of the ovipositor of Habrobracon hebetor (Say) (Hymenoptera: Braconidae). Micron 39, 12551261.Google Scholar
Farrell, BD, Dussourd, DE & Mitter, C (1991). Escalation of plant defense: Do latex and resin canals spur plant diversification. Am Nat 138, 881900.Google Scholar
Gao, Y, Wang, ZY, Zhao, HY & Liu, X (2013). Scanning electron microscopy observation on the antennal sensilla of Tetrastichus planipennisi (Hymenoptera: Eulophidae). Sci Agric Sin 46, 19561964 (in Chinese with English summary)Google Scholar
Huang, ZY, Li, J, Lu, W, Zheng, XL & Yang, ZD (2018 b). Parasitoids of the eucalyptus gall wasp Leptocybe invasa: A global review. Environ Sci Pollut R 25, 2998329995.Google Scholar
Huang, ZY, Liu, JY, Zhang, YJ, Guo, CH, Yang, ZD, Lu, W & Zheng, XL (2017). Scanning electron microscopy of antennal sensilla of Megastigmus sichuanensis Doğanlar et Zheng (Hymenoptera: Torymidae). Zool Anz 271, 2532.Google Scholar
Huang, ZY, Zhang, YJ, Liu, JY, Yang, ZD, Lu, W & Zheng, XL (2018 a). Ultrastructure of female antennal sensilla of an endoparasitoid wasp, Quadrastichus mendeli Kim & La Salle (Hymenoptera: Eulophidae: Tetrastichinae). Microsc Microanal 24, 431441.Google Scholar
Hurley, BP, Slippers, B & Wingfield, MJ (2017). Biological control of insects in plantation forests: Optimising an old approach for diverse and changing environments (Conference: 7th Forest Science Symposium Fems).Google Scholar
Kim, IK, Mendel, Z & Protasov, A (2008). Taxonomy biology and efficacy of two Australian parasitoids of the Eucalyptus gall wasp Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae: Tetrastichinae). Zootaxa 1910, 120.Google Scholar
Lannic, JL & Nénon, JP (1999). Functional morphology of the ovipositor in Megarhyssa atrata (Hymenoptera, Ichneumonidae) and its penetration into wood. Zoomorphology 119, 7379.Google Scholar
Lawson, S (2012). Biological control of eucalypt pests overseas and in Australia. Australian Centre for International Agricultural Research (ACIAR), Canberra. Publication FR2012-26.Google Scholar
Lawson, S, Douangboupha, B, Phongoudome, C, Ol, US, Wiwatwitaya, D & Thu, PQ (2014). Biological control of galling pests in eucalypt plantations in the Mekong region. Available at http://aciargovau/project/fst/2012/091 (retrieved January 3, 2018).Google Scholar
Le Ralec, A & Wajnberg, E (1990). Sensory receptors of the ovipositor of Trichogramma maidis [Hym: Trichogrammatidae]. Entomophaga 35, 293299.Google Scholar
Mayhew, PJ & Blackburn, TM (1999). Does development mode organise life-history traits in the parasitoid Hymenoptera? J Anim Ecol 68, 906916.Google Scholar
Mendel, Z, Protasov, A, Fisher, N & Salle, JL (2004). Taxonomy and biology of Leptocybe invasa gen. & sp. n. (Hymenoptera: Eulophidae) an invasive gall inducer on Eucalyptus. Aust J Entomol 43, 101113.Google Scholar
Mendel, Z, Protasov, A & La Salle, J (2017). Classical biological control of two eucalyptus gall wasps; main outcome and conclusions. Biol Control 105, 6678.Google Scholar
Nugnes, F, Gebiola, M, Monti, M, Gualtieri, L, Giorgini, M, Wang, J & Bernardo, U (2015). Genetic diversity of the invasive gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) and of its rickettsia endosymbiont, and associated sex-ratio differences. PLoS One 10, 5. e0124660. Available at http://dx.doi.org/10.1371/journal.pone.0124660.Google Scholar
Quicke, DLJ (1997). Parasitic Wasps. London: Chapman & Hall.Google Scholar
Quicke, DLJ & Fitton, MG (1995). Ovipositor steering mechanism in parasitic wasps of the families Gasteruptiidae and Aulacidae (Hymenoptera). Proc R Soc Lond B 261, 99103.Google Scholar
Quicke, DLJ, Leralec, A & Vilhelmsen, L (1999). Ovipositor structure and function in the parasitic Hymenoptera with an exploration of new hypothesis. Rendiconti 47, 197239.Google Scholar
Riga, F, Trocchi, V, Randi, E & Toso, S (2001). Morphometric differentiation between the Italian hare (Lepus corsicanus De Winton, 1898) and the European brown hare (Lepus europaeus Pallas, 1778). J Zool 253, 241251.Google Scholar
Sangtongpraow, B & Charernsom, K (2012). Longevity and developmental time of Aprostocetus sp. (Hymenoptera: Eulophidae), the local parasitoid of Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae). (Conference: International Symposium of BioPesticides and Ecotoxicological Network, 2nd IS - BioPEN, September 24–25, At Maruay Garden Hotel, Bangkok, Thailand).Google Scholar
Shaw, MR & Huddleston, T (1991). Classification and biology of braconid wasps (Hymenoptera: Braconidae). London, UK: Royal Entomological Society.Google Scholar
Smith, EL (1970). Evolutionary morphology of the external insect genitalia. II. Hymenoptera. Ann Entomol Soc Am 63, 127.Google Scholar
Spänhoff, B, Alecke, C, Kaschek, N, Lange, J & Meyer, EI (2003). Morphological characteristics of sensilla on the female ovipositor of Lype phaeopa (Psychomyiidae: Trichoptera). J Insect Sci 3, 7.Google Scholar
Van Veen, JC & van Wijk, MLE (1985). The unique structure and functions of the ovipositor of the non-paralyzing ectoparasitoid Colpoclypeus florus Walk. [Hym.: Eulophidae] with special reference to antennal sensilla and immature stages. J Appl Entomol 99, 511531.Google Scholar
Vincent, JFV & King, MJ (1996). The mechanism of drilling by wood wasp ovipositors. Biomimetics 3, 187201.Google Scholar
Vinson, SB & Iwantsch, GF (1980). Host regulation by insect parasitoids. Q Rev Biol 55, 143165.Google Scholar
Wang, SG & Jiang, YY (2007). Morphology and ultrastructure of sense organs on the ovipositors of Cotesia plutellae and Diadegma semiclausum, two parasitic wasps of diamondback moth plutella xyllostella. Acta Zootaxonomica Sin 32, 369375 (in Chinese with English summary)Google Scholar
Yang, MM, Lin, YC, Wu, YJ & Fisher, N (2014). Two new Aprostocetus species (Hymenoptera: Eulophidae: Tetrastichinae), fortuitous parasitoids of invasive eulophid gall inducers (Tetrastichinae) on Eucalyptus and Erythrina. Zootaxa 3846, 261272.Google Scholar
Zheng, XL, Huang, ZY, Dong, D, Guo, CH, Li, J & Yang, ZD (2016). Parasitoids of the eucalyptus gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) in China. Parasite 23, 58.Google Scholar
Zheng, XL, Li, J, Yang, ZD, Xian, ZH, Wei, JG & Lei, CL (2014). A review of invasive biology prevalence and management of Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae: Tetrastichinae). Afr Entomol 22, 6879.Google Scholar