No CrossRef data available.
Article contents
Size-Dependent Equilibrium Shapes of Solid Pb Inclusions in Al
Published online by Cambridge University Press: 02 July 2020
Extract
Small Pb inclusions in Al have been studied by a number of investigators because the alloy system offers the possibility of observing the processes of melting and solidification directly. Both solids are fee, and the mutual solubility of solid Pb and Al is negligible. Despite a large difference in lattice parameter, it has been found that inclusions follow a parallel-cube orientation relationship and their equilibrium shape is a cuboctahedron, bounded by ﹛111﹜ and ﹛100﹜ facets [1]. Following Herring, the relative extent of the two types of facet directly indicates a ratio of interfacial energies γl00/γ111- However, recent investigations have shown that for inclusions in the range of a few to a few tens of nanometers the equilibrium shape becomes a function of size [2].
In the present work, this size dependence of the equilibrium shape has been investigated further. Al alloys with about lat.% Pb were prepared by rapid solidification or by ion implantation, and equilibrated by annealing at about 300°C.
- Type
- Atomic Structure and Mechanisms at Interfaces in Materials
- Information
- Microscopy and Microanalysis , Volume 3 , Issue S2: Proceedings: Microscopy & Microanalysis '97, Microscopy Society of America 55th Annual Meeting, Microbeam Analysis Society 31st Annual Meeting, Histochemical Society 48th Annual Meeting, Cleveland, Ohio, August 10-14, 1997 , August 1997 , pp. 629 - 630
- Copyright
- Copyright © Microscopy Society of America 1997