Article contents
The Si/SiO2 Interface: Atomic Structures, Composition, Strain And Energetics
Published online by Cambridge University Press: 02 July 2020
Extract
A number of recent studies of grain boundaries and heterophase interfaces have demonstrated the power of combining Z-contrast STEM imaging, EELS and first-principles theoretical modeling to give an essentially complete atomic scale description of structure, bonding and energetics. Impurity sites and valence can be determined experimentally and configurations determined through calculations.
Here we present an investigation of the Si/SiO2 interface. The Z-contrast image in Fig. la, taken with the VG Microscopes HB603U STEM, shows that the atomic structure of Si is maintained up to the last layers visible. The decrease in intensity near the interface could originate from interfacial roughness of around one unit cell (∼0.5 nm), or may represent dechanneling in the slightly buckled columns induced by the oxide. Fig. lb, taken from a sample with ∼1 nm interface roughness, shows a band of bright contrast near the interface. This is not due to impurities or thickness variation since it disappears on increasing the detector angle from 25 mrad to 45 mrad (Fig. lc), and is therefore due to induced strain.
- Type
- Atomic Structure And Microchemistry Of Interfaces
- Information
- Copyright
- Copyright © Microscopy Society of America
References
- 1
- Cited by