Published online by Cambridge University Press: 02 October 2018
This paper presents a new method for creating and monitoring controlled localized negatively charged regions inside insulators with a scanning electron microscope (SEM). A localized buried charged region is created and observed close to the point where a high voltage primary beam (10 kV) strikes a metal–insulator–silicon specimen. The amount of buried charge within the insulator at any given moment can be dynamically monitored by detecting the appearance of a second peak in the secondary electron (SE) energy spectrum. SE energy spectral signals were obtained through the use of a compact high signal-to-noise energy analyzer attachment that was fitted on to the SEM specimen stage. An electrostatic model, together with Monte Carlo simulations, is presented to explain how the SE charge contrast effect functions. This model is then experimentally confirmed by using the SE energy spectral signal induced by a gallium ion beam inside a dual focused ion beam-SEM instrument.