Article contents
A Reassessment of the Metastable Miscibility Gap in Al-Ag Alloys by Atom Probe Tomography
Published online by Cambridge University Press: 14 November 2007
Abstract
The evolution of Guinier-Preston zones in an Al-2.7 at.% Ag alloy was studied using atom probe tomography. The composition and morphology of the GP zones are time dependent, explaining discrepancies in previous work. This result requires the metastable miscibility gap for GP zones to be reevaluated, highlighting the importance of the temporal evolution of the GP zones. Preliminary results on the composition of γ′ and γ plates are also presented.
- Type
- Research Article
- Information
- Microscopy and Microanalysis , Volume 13 , Issue 6: Special Issue: Atom Probe Tomography , December 2007 , pp. 484 - 492
- Copyright
- © 2007 Microscopy Society of America
References
REFERENCES
Alexander, K.B.,
Legoues, F.K.,
Aaronson, H.I. &
Laughlin, D.E.
(1984).
Faceting of GP zones in an Al-Ag alloy.
Acta Metall
32,
2241–2249.CrossRefGoogle Scholar
Al-Kassab, T. &
Haasen, P.
(1993).
Early stages of precipitation in dilute Al-Ag alloys.
Zeitschrift fur Metallkunde
84,
248–250.Google Scholar
Asta, M. &
Hoytt, J.J.
(2000).
Thermodynamic properties of coherent interfaces in fcc-based Ag-Al alloys: A first-principles study.
Acta Mater
48,
1089–1096.CrossRefGoogle Scholar
Baur, R. &
Gerold, V.
(1962).
The existence of a metastable miscibility gap in aluminium-silver alloys.
Acta Metall
19,
637–645.CrossRefGoogle Scholar
Bischoff, G.,
Groger, V.,
Krexner, G. &
Nieminen, R.M.
(1996).
Investigation of the composition and structure of GP zones in Al-Ag by means of positron annihilation.
J Phys Condens Matter
8,
7523–7537.CrossRefGoogle Scholar
Dubey, P.A.,
Schonfeld, B. &
Kostorz, G.
(1991).
Shape and internal structure of Guinier-Preston zones in Al-Ag.
Acta Metall Mater
39,
1161–1170.CrossRefGoogle Scholar
Erni, R.
(2003).
Atomic-scale analysis of precipitates in Al-3 at.%Ag: Transmission electron microscopy.
Ph.D. thesis.
Zurich:
Swiss Federal Institute of Technology.
Erni, R.,
Heinrich, H. &
Kostorz, G.
(2003).
On the internal structure of Guinier-Preston zones in Al-3 at.% Ag.
Phil Mag Lett
83,
599–609.CrossRefGoogle Scholar
Ernst, F. &
Haasen, P.
(1987).
The decomposition kinetics of Al-1 at%Ag at 413K studied by HREM.
Phys Stat Sol
104,
404–416.Google Scholar
Gragg, J.E. &
Cohen, J.B.
(1971).
The structure of Guinier-Preston zones in aluminum-5at.% silver.
Acta Metall
19,
507–519.Google Scholar
Guinier, A.
(1942).
Le mécanisme de la precipitation dans un cristal de solution solide métallique.
J Phys
3,
124–136.Google Scholar
Hellman, O.C.,
Vandenbroucke, J.A.,
Rusing, J.,
Isheim, D. &
Seidman, D.N.
(2000).
Analysis of three-dimensional atom-probe data by the proximity histogram.
Microsc Microanal
6,
437–444.Google Scholar
Howe, J.M.,
Aaronson, H.I. &
Gronsky, R.
(1985).
Atomic mechanisms of precipitate plate growth in the Al-Ag system—II. High resolution transmission electron microscopy.
Acta Metall
33,
639–648.Google Scholar
Howe, J.M. &
Gronsky, R.
(1986).
Quantitative energy-dispersive X-ray analyses of γ′ precipitates in an Al-4.2 at.% Ag alloy.
Scripta Metall
20,
1165–1168.CrossRefGoogle Scholar
Komiya, Y.,
Hirosawa, S. &
Sato, T.
(2006).
3DAP nano-scale analysis of solute clusters formed in naturally aged Al-Zn alloys.
J Jpn Inst Light Metals
56,
662–666.CrossRefGoogle Scholar
Legoues, F.K.,
Wright, R.N.,
Lee, Y.W. &
Aaronson, H.I.
(1984).
Influence of crystallography upon critical nucleus shapes and kinetics of homogeneous fcc-fcc nucleation—V. The origin of GP zones in Al-Ag and Al-Cu alloys.
Acta Metall
32,
1865–1870.Google Scholar
Malik, A.,
Shonfeld, B.,
Kostorz, G. &
Pedersen, J.S.
(1996).
Microstructure of Guinier-Preston zones in Al-Ag.
Acta Mater
44,
4845–4852.CrossRefGoogle Scholar
Massalski, T.B.
(1990).
Binary Alloy Phase Diagrams,
2nd ed., vol. 1.
Warrendale, PA:
ASM International.
Miller, M.K.,
Cerezo, A.,
Hetherington, M.G. &
Smith, G.D.W.
(1996).
Atom Probe Field Ion Microscopy.
Monographs on the Physics and Chemistry of Materials, Vol. 52. Oxford:
Oxford University Press.
Naudon, A. &
Caisson, J.
(1974).
Etude de la Lacune de miscibilité métastable et de la structure cristallographique des zones G.P. dans les alliages Aluminium-Argent.
J Appl Cryst
7,
25–36.Google Scholar
Nicholson, R.B. &
Nutting, J.
(1961).
The metallography of precipitation in an Al-16% Ag alloy.
Acta Metall
9,
332–343.CrossRefGoogle Scholar
Osamura, K. &
Nakamura, T.
(1986).
An AP-FIM study of metastable phases in Al-Ag binary alloy.
Acta Metal
34,
1563–1570.CrossRefGoogle Scholar
Osamura, K.,
Nakamura, T.,
Kobayashi, A.,
Hashizume, T. &
Sakurai, T.
(1987).
Chemical composition of GP zones in Al-Ag alloys.
Scripta Metall
21,
255–258.CrossRefGoogle Scholar
Vaumousse, D.,
Cerezo, A. &
Warren, P.J.
(2002).
A procedure for quantification of precipitate microstructures from three-dimensional atom probe data.
Ultramicroscopy
95,
215–221.Google Scholar
- 20
- Cited by