Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T11:07:20.872Z Has data issue: false hasContentIssue false

Quantitative Cathodoluminescence Mapping with Application to a Kalgoorlie Scheelite

Published online by Cambridge University Press:  22 May 2009

Colin M. MacRae*
Affiliation:
Microbeam Laboratory, CSIRO Minerals, Bayview Avenue, Clayton, Victoria 3168, Australia
Nicholas C. Wilson
Affiliation:
Microbeam Laboratory, CSIRO Minerals, Bayview Avenue, Clayton, Victoria 3168, Australia
Joel Brugger
Affiliation:
School of Earth and Environmental Sciences, University of Adelaide, SA 5005; and Division of Minerals, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

A method for the analysis of cathodoluminescence spectra is described that enables quantitative trace-element-level distributions to be mapped within minerals and materials. Cathodoluminescence intensities for a number of rare earth elements are determined by Gaussian peak fitting, and these intensities show positive correlation with independently measured concentrations down to parts per million levels. The ability to quantify cathodoluminescence spectra provides a powerful tool to determine both trace element abundances and charge state, while major elemental levels can be determined using more traditional X-ray spectrometry. To illustrate the approach, a scheelite from Kalgoorlie, Western Australia, is hyperspectrally mapped and the cathodoluminescence is calibrated against microanalyses collected using a laser ablation inductively coupled plasma mass spectrometer. Trace element maps show micron scale zoning for the rare earth elements Sm3+, Dy3+, Er3+, and Eu3+/Eu2+. The distribution of Eu2+/Eu3+ suggests that both valences of Eu have been preserved in the scheelite since its crystallization 1.63 billion years ago.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blanc, P., Baumer, A., Cesborn, F., Ohnenstetter, D., Panczer, G. & Remond, G. (2000). Systematic cathodoluminescence spectral analysis of synthetic doped minerals. In Cathodoluminescence in Geosciences, Pagel, M., Barbin, V., Blanc, P. & Ohnenstetter, D. (Eds.), pp. 127160. Berlin, New York: Springer.Google Scholar
Brugger, J., Bettiol, A.A., Costa, S., Lahaye, Y., Bateman, R., Lambert, D.D. & Jamieson, D.N. (2000a). Mapping REE distribution in scheelite using luminescence. Mineral Mag 64(5), 891903.CrossRefGoogle Scholar
Brugger, J., Etschmann, B., Chu, Y.S., Harland, C., Vogt, S., Ryan, C. & Jones, H. (2006). The oxidation state of europium in hydrothermal scheelite: In situ measurement by XANES spectroscopy. Can Mineral 44, 10791087.CrossRefGoogle Scholar
Brugger, J., Lahaye, Y., Costa, S., Lambert, D. & Bateman, R. (2000b). Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, Western Australia). Contrib Mineral Petr 139(3), 251264.CrossRefGoogle Scholar
Brugger, J., Maas, R., Lahaye, Y., McRae, C., Ghaderi, M., Costa, S., Lambert, D., Bateman, R. & Prince, K. (2002). Origins of Nd-Sr-Pb isotopic variations in single scheelite grains from Archaean gold deposits, Western Australia. Chem Geol 182(2-4), 203225.CrossRefGoogle Scholar
Clout, J., Cleghorn, J. & Eaton, P. (1990). Geology of the Kalgoorlie gold field. In Geology of the Kalgoorlie Goldfield, Hughes, F. (Ed.), pp. 411431. Melbourne, Australia: The Australian Institute of Mining and Metallurgy.Google Scholar
Edwards, P.R., Martin, R.W., O'Donnell, K.P. & Watson, I.M. (2003). Simultaneous composition mapping and hyperspectral cathodoluminescence imaging of InGaN epilayers. Phys Status Solidi 7, 24742477.Google Scholar
Gaft, M., Panczer, G., Uspensky, E. & Reisfeld, R. (1999). Laser-induced time-resolved luminescence of rare-earth elements in scheelite. Mineral Mag 63(2), 199210.CrossRefGoogle Scholar
Gaft, M., Reisfeld, R. & Panczer, G. (2005). Luminescence Spectroscopy of Minerals and Materials. Berlin, Heidelberg: Springer.Google Scholar
Ghaderi, M., Palin, J.M., Campbell, I.H. & Sylvester, P.J. (1999). Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia. Econ Geol Bull Soc 94(3), 423437.CrossRefGoogle Scholar
Giere, R. (1996). Formation of rare earth minerals in hydrothermal systems. In Rare Earth Minerals: Chemistry, Origin and Ore Deposits, Jones, A.P., Walls, F. & Williams, C.T. (Eds.), pp. 105150. London: Chapman and Hall.Google Scholar
Götze, J. (2002). Potential of cathodoluminescence (CL) microscopy and spectroscopy for the analysis of minerals and materials. Anal Bioanal Chem 374(4), 703708.Google Scholar
Götze, J., Krbetschek, M.R., Habermann, D. & Wolf, D. (2000). High-resolution cathodoluminescence studies of feldspar minerals. In Cathodoluminescence in Geosciences, Pagel, M., Barbon, V., Blanc, P. & Ohnenstetter, D. (Eds.), pp. 246770. Berlin, Heidelberg, New York, Tokyo: Springer.Google Scholar
Habermann, D. (2002). Quantitative cathodoluminescence (CL) spectroscopy of minerals: Possibilities and limitations. Mineral Petrol 76, 247259.CrossRefGoogle Scholar
Habermann, D., Gotte, T., Meijer, J., Stephan, A., Richter, D.K. & Niklas, J.R. (2000). High resolution rare-earth elements analyses of natural apatite and its application in geo-sciences: Combined micro-PIXE, quantitative CL spectroscopy and electron spin resonance analyses. Nucl Instrum Meth B 161, 846851.CrossRefGoogle Scholar
Habermann, D., Neuser, R.D. & Richter, D.K. (1998). Low limit of Mn2+-activated cathodoluminescence of calcite: State of the Art. Sediment Geol 116(1-2), 1324.CrossRefGoogle Scholar
Harrowfield, I.R., MacRae, C. & Wilson, N.C. (1993). Chemical imaging in electron microprobes. In Proceedings of the 27th Annual MAS Meeting 1993, pp. 547548. New York: Microbeam Analysis Society.Google Scholar
Hemming, N.G., Meyers, W.J. & Grams, J.C. (1989). Cathodoluminescence in diagenetic calcites—The roles of Fe and Mn as deduced from electron-probe and spectrophotometric measurements. J Sediment Petrol 59(3), 404411.Google Scholar
Imbusch, G.F. (1978). Inorganic luminescence. In Luminescence Spectroscopy, Lumb, M.D. (Ed.), pp. 192. London: Academic Press.Google Scholar
Kempe, U., Tinkler, M. & Wold, D. (1991). Yttrium und die Seltenerdfolomineszenz natürlicher Scheelite. Chem Erde 51, 275289.Google Scholar
MacRae, C.M. & Wilson, N.C. (2008). Luminescence database I—Minerals and materials. Microsc Microanal 14(2), 184204.CrossRefGoogle ScholarPubMed
MacRae, C.M., Wilson, N.C. & Brugger, J. (2008). Hyperspectral cathodoluminescence microanalysis—Mapping at the part per million level. In IUMAS IV Conference, Perth, Australia, February 10–15, 2008.Google Scholar
MacRae, C.M., Wilson, N.C., Johnson, S.A., Phillips, P.L. & Otsuki, M. (2005). Hyperspectral mapping—Combining cathodoluminescence and X-ray collection in an electron microprobe. Microsc Res Techniq 67(5), 271277.CrossRefGoogle Scholar
MacRae, C.M., Wilson, N.C. & Otsuki, M. (2001). Holistic mapping in an electron microprobe. In Microscopy and Microanalysis, Bailey, G.W. (Ed.), pp. 146147. New York: Springer.Google Scholar
Marfunin, A.S. (1979). Spectroscopy, Luminescence and Radiation Centers in Minerals. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Mariano, A.N. & Ring, P.J. (1975). Europium-activated cathodoluminescence in minerals. Geochim Cosmochim Acta 39, 649660.Google Scholar
Marshall, D.J. (1988). Cathodoluminescence of Geological Materials. London, UK: Unwin Hyman Ltd.Google Scholar
Mason, R., Clouter, M. & Goulding, R. (2005). The luminescence decay-time of Mn2+ activated calcite. Phys Chem Miner 32(7), 451459.CrossRefGoogle Scholar
Mason, R.A. (1987). Ion microprobe analysis of trace-elements in calcite with an application to the cathodoluminescence zonation of limestone cements from the lower carboniferous of South-Wales, UK. Chem Geol 64(3-4), 209224.CrossRefGoogle Scholar
Mora, C.I. & Ramseyer, K. (1992). Cathodoluminescence of coexisting Plagioclases, Boehls Butte Anorthosite—Cl activators and fluid-flow paths. Am Mineral 77(11-12), 12581265.Google Scholar
Nasdala, L., Götze, J., Hanusiak, W.M., Gaft, M. & Krbetschek, M.R. (2004). Luminescence techniques in earth sciences. In EMU Notes in Mineralogy, pp. 149. Budapest, Hungary: Eötvös University Press.Google Scholar
Nazarov, M.V., Jeon, D.Y., Kang, J.H., Popovici, E.-J., Muresan, L.-E., Zamoryanskaya, M.V. & Tsukerbalt, B.S. (2004). Luminescence properties of europium-terbium double activated calcium tungstate phosphor. Solid State Commun 131, 307311.Google Scholar
Reed, S.J.B. & Long, J.V.P. (1963). Electron Probe Measurements near Phase Boundaries. New York: Academic Press.CrossRefGoogle Scholar
Remond, G., Cesborn, F., Chapoulie, R., Ohnenstetter, D., Roque-carmes, C. & Schvoerer, M. (1992). Cathodoluminescence applied to the microcharacterization on mineral materials: A present status in experimentation and interpretation. Scanning Microscopy 6(1), 2368.Google Scholar
Telfer, D.J. & Walker, G. (1978). Ligand field bands of Mn2+ and Fe3+ luminescence centres and their site occupancy in plagioclase feldpsars. Mod Geol 6, 199210.Google Scholar
Yacobi, B.G. & Holt, D.B. (1990). Cathodoluminescence Microscopy of Inorganic Solids. New York, London: Plenum Press.Google Scholar