Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T16:12:30.418Z Has data issue: false hasContentIssue false

Pluripotent Stem Cells and Reprogrammed Cells in Farm Animals

Published online by Cambridge University Press:  20 June 2011

Monika Nowak-Imialek
Affiliation:
Institute of Farm Animal Genetics (FLI), Biotechnology, Mariensee, 31535 Neustadt, Germany
Wilfried Kues
Affiliation:
Institute of Farm Animal Genetics (FLI), Biotechnology, Mariensee, 31535 Neustadt, Germany
Joseph W. Carnwath
Affiliation:
Institute of Farm Animal Genetics (FLI), Biotechnology, Mariensee, 31535 Neustadt, Germany
Heiner Niemann*
Affiliation:
Institute of Farm Animal Genetics (FLI), Biotechnology, Mariensee, 31535 Neustadt, Germany
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Pluripotent cells are unique because of their ability to differentiate into the cell lineages forming the entire organism. True pluripotent stem cells with germ line contribution have been reported for mice and rats. Human pluripotent cells share numerous features of pluripotentiality, but confirmation of their in vivo capacity for germ line contribution is impossible due to ethical and legal restrictions. Progress toward derivation of embryonic stem cells from domestic species has been made, but the derived cells were not able to produce germ line chimeras and thus are termed embryonic stem-like cells. However, domestic animals, in particular the domestic pig (Sus scrofa), are excellent large animals models, in which the clinical potential of stem cell therapies can be studied. Reprogramming technologies for somatic cells, including somatic cell nuclear transfer, cell fusion, in vitro culture in the presence of cell extracts, in vitro conversion of adult unipotent spermatogonial stem cells into germ line derived pluripotent stem cells, and transduction with reprogramming factors have been developed with the goal of obtaining pluripotent, germ line competent stem cells from domestic animals. This review summarizes the present state of the art in the derivation and maintenance of pluripotent stem cells in domestic animals.

Type
Review Article
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bilic, J., Pekarik, V., Tiscornia, G., Edel, M., Boue, S. & Izpisua Belmonte, J.C. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26, 12761284.CrossRefGoogle ScholarPubMed
Ahn, K.S., Won, J.Y., Heo, S.Y., Kang, J.H., Yang, H.S. & Shim, H. (2007). Transgenesis and nuclear transfer using porcine embryonic germ cells. Cloning Stem Cells 9, 461468.CrossRefGoogle ScholarPubMed
Alberio, R., Croxall, N. & Allegrucci, C. (2010). Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells Dev 6, 484495.Google Scholar
Alberio, R., Johnson, A.D., Stick, R. & Campbell, K.H. (2005). Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm. Exp Cell Res 307, 131–41.Google Scholar
Anand, T., Kumar, D., Singh, M., Shah, R., Chauhan, M., Manik, R., Singla, S. & Palta, P. (2009). Buffalo (Bubalus bubalis) embryonic stem cell-like cells and preimplantation embryos exhibit comparable expression of pluripotency-related antigens. Reprod Dom Anim doi: 10.1111/j.1439-0531.2009.01564.x.Google Scholar
Anderson, G.B., BonDurant, R.H., Goff, L., Groff, J. & Moyer, A.L. (1996). Development of bovine and porcine embryonic teratomas in athymic mice. Anim Reprod Sci 45, 231240.CrossRefGoogle ScholarPubMed
Anderson, G.B., Choi, S.J. & Bondurant, R.H. (1994). Survival of porcine inner cell masses in culture and after injection into blastocysts. Theriogenology 42, 204212.CrossRefGoogle ScholarPubMed
Aoi, T., Yae, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., Chiba, T. & Yamanaka, S. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321, 699702.Google Scholar
Aponte, P.M. & Rooij, D.G. (2008). Biomanipulation of bovine spermatogonial stem cells. Anil Reprod 5, 1622.Google Scholar
Aponte, P.M., Soda, T., van de Kant, H.J. & de Rooij, D.G. (2006). Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor. Theriogenology 65, 18281847.CrossRefGoogle ScholarPubMed
Baguisi, A., Behboodi, E., Melican, D.T., Pollock, J.S., Destrempes, M.M., Cammuso, C., Williams, J.L., Nims, S.D., Porter, C.A., Midura, P., Palacios, M.J., Ayres, S.L., Denniston, R.S., Hayes, M.L., Ziomek, C.A., Meade, H.M., Godke, R.A., Gavin, W.G., Overstrom, E.W. & Echelard, Y. (1999). Production of goats by somatic cell nuclear transfer. Nat Biotechnol 17, 456461.Google Scholar
Berg, D.K., Li, C., Asher, G., Wells, D.N. & Oback, B. (2007). Red deer cloned from antler stem cells and their differentiated progeny. Biol Reprod 77, 384394.CrossRefGoogle Scholar
Bianchi, G., Banfi, A., Mastrogiacomo, M., Notaro, R., Luzzatto, L., Cancedda, R. & Quarto, R. (2003). Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp Cell Res 287, 98105.Google Scholar
Blelloch, R., Wang, Z., Meissner, A., Pollard, S., Smith, A. & Jaenisch, R. (2006). Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells 24, 20072013.Google Scholar
Blelloch, R.H., Hochedlinger, K., Yamada, Y., Brennan, C., Kim, M., Mintz, B., Chin, L. & Jaenisch, R. (2004). Nuclear cloning of embryonal carcinoma cells. Proc Nat Acad Sci USA 101, 1398513990.Google Scholar
Blomberg, L.A., Schreier, L.L. & Talbot, N.C. (2008). Expression analysis of pluripotency factors in the undifferentiated porcine inner cell mass and epiblast during in vitro culture. Mol Reprod Dev 75, 450463.CrossRefGoogle ScholarPubMed
Boiani, M., Eckardt, S., Scholer, H.R. & McLaughlin, K.J. (2002). Oct4 distribution and level in mouse clones: Consequences for pluripotency. Gene Dev 16, 12091219.Google Scholar
Boiani, M., Gentile, L., Gambles, V.V., Cavaleri, F., Redi, C.A. & Scholer, H.R. (2005). Variable reprogramming of the pluripotent stem cell marker Oct4 in mouse clones: Distinct developmental potentials in different culture environments. Stem Cells 23, 10891104.CrossRefGoogle ScholarPubMed
Boland, M.J., Hazen, J.L., Nazor, K.L., Rodriguez, A.R., Gifford, W., Martin, G., Kupriyanov, S. & Baldwin, K.K. (2009). Adult mice generated from induced pluripotent stem cells. Nature 461, 9194.CrossRefGoogle ScholarPubMed
Brambrink, T., Hochedlinger, K., Bell, G. & Jaenisch, R. (2006). ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc Natl Acad Sci USA 103, 933938.CrossRefGoogle ScholarPubMed
Brevini, T.A., Antonini, S., Cillo, F., Crestan, M. & Gandolfi, F. (2007a). Porcine embryonic stem cells: Facts, challenges and hopes. Theriogenology 68(S1), S206S213.CrossRefGoogle Scholar
Brevini, T.A., Antonini, S., Pennarossa, G. & Gandolfi, F. (2008). Recent progress in embryonic stem cell research and its application in domestic species. Reprod Domest Anim 43(S2), 193199.CrossRefGoogle ScholarPubMed
Brevini, T.A., Cillo, F. & Gandolfi, F. (2005). Establishment and molecular characterization of pig parthenogenetic embryonic stem cells. Reprod Fertil Dev 17, 235(Abstract).CrossRefGoogle Scholar
Brevini, T.A., Pennarossa, G., Attanasio, L., Vanelli, A., Gasparrini, B. & Gandolfi, F. (2010b). Culture conditions and signalling networks promoting the establishment of cell lines from parthenogenetic and biparental pig embryos. Stem Cell Rev 6, 484495.Google Scholar
Brevini, T.A., Pennarossa, G. & Gandolfi, F. (2010a). No shortcuts to pig embryonic stem cells. Theriogenology 74, 544550.Google Scholar
Brevini, T.A., Tosetti, V., Crestan, M., Antonini, S. & Gandolfi, F. (2007b). Derivation and characterization of pluripotent cell lines from pig embryos of different origins. Theriogenology 67, 5463.CrossRefGoogle ScholarPubMed
Brinster, R.L. & Avarbock, M.R. (1994). Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci USA 91, 1130311307.CrossRefGoogle ScholarPubMed
Brinster, R.L. & Zimmermann, J.W. (1994). Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA 91, 1129811302.CrossRefGoogle ScholarPubMed
Buehr, M., Meek, S., Blair, K., Yang, J., Ure, J., Silva, J., McLay, R., Hall, J., Ying, Q.L. & Smith, A. (2008). Capture of authentic embryonic stem cells from rat blastocysts. Cell 135, 12871298.Google Scholar
Byrne, J.A., Pedersen, D.A., Clepper, L.L., Nelson, M., Sanger, W.G., Gokhale, S., Wolf, D.P. & Mitalipov, S.M. (2007). Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450, 497502.Google Scholar
Byrne, J.A., Simonsson, S., Western, P.S. & Gurdon, J.B. (2003). Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr Biol 13, 12061213.Google Scholar
Cabot, R.A., Kuhholzer, B., Chan, A.W., Lai, L., Park, K.W., Chong, K.Y., Schatten, G., Murphy, C.N., Abeydeera, L.R., Day, B.N. & Prather, R.S. (2001). Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector. Anim Biotechnol 12, 205214.CrossRefGoogle ScholarPubMed
Campbell, K.H., McWhir, J., Ritchie, W.A. & Wilmut, I. (1996). Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 6466.Google Scholar
Cao, S., Wang, F., Chen, Z., Liu, Z., Mei, C., Wu, H., Huang, J., Li, C., Zhou, L. & Liu, L. (2009). Isolation and culture of primary bovine embryonic stem cell colonies by a novel method. J Exp Zool A Ecol Genet Physiol 311, 368376.Google Scholar
Carvajal-Vergara, X., Sevilla, A., D'Souza, S.L., Ang, Y.S., Schaniel, C., Lee, D.F., Yang, L., Kaplan, A.D., Adler, E.D., Rozov, R., Ge, Y., Cohen, N., Edelmann, L.J., Chang, B., Waghray, A., Su, J., Pardo, S., Lichtenbelt, K.D., Tartaglia, M., Gelb, B.D. & Lemischka, I.R. (2010). Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465, 808812.Google Scholar
Chen, L.R., Shiue, Y.L., Bertolini, L., Medrano, J.F., BonDurant, R.H. & Anderson, G.B. (1999). Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology 52, 195212.Google Scholar
Cherny, R.A., Stokes, T.M., Merei, J., Lom, L., Brandon, M.R. & Williams, R.L. (1994). Strategies for the isolation and characterization of bovine embryonic stem cells. Reprod Fertil Dev 6, 569575.CrossRefGoogle ScholarPubMed
Chesne, P., Adenot, P.G., Viglietta, C., Baratte, M., Boulanger, L. & Renard, J.P. (2002). Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol 20, 366369.Google Scholar
Cho, H.J., Lee, C.S., Kwon, Y.W., Paek, J.S., Lee, S.H., Hur, J., Lee, E.J., Roh, T.Y., Chu, I.S., Leem, S.H., Kim, Y., Kang, H.J., Park, Y.B. & Kim, H.S. (2010). Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood 116, 386395.CrossRefGoogle ScholarPubMed
Chung, Y., Bishop, C.E., Treff, N.R., Walker, S.J., Sandler, V.M., Becker, S., Klimanskaya, I., Wun, W.S., Dunn, R., Hall, R.M., Su, J., Lu, S.J., Maserati, M., Choi, Y.H., Scott, R., Atala, A., Dittmann, R. & Lanza, R. (2009). Reprogramming of human somatic cells using human and animal oocytes. Cloning Stem Cells 11, 213223.Google Scholar
Cibelli, J.B., Stice, S.L., Golueke, P.J., Kane, J.J., Jerry, J., Blackwell, C., Ponce de Leon, F.A. & Robl, J.M. (1998). Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat Biotechnol 16, 642646.Google Scholar
Cowan, C.A., Atienza, J., Melton, D.A. & Eggan, K. (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 13691373.Google Scholar
Dattena, M., Chessa, B., Lacerenza, D., Accardo, C., Pilichi, S., Mara, L., Chessa, F., Vincenti, L. & Cappai, P. (2006). Isolation, culture, and characterization of embryonic cell lines from vitrified sheep blastocysts. Mol Reprod Dev 73, 3139.Google Scholar
De Miguel, M.P., Fuentes-Julián, S. & Alcaina, Y. (2010). Pluripotent stem cells: Origin, maintenance and induction. Stem Cell Rev 6, 633649.Google Scholar
Dirami, G., Ravindranath, N., Pursel, V. & Dym, M. (1999). Effects of stem cell factor and granulocyte macrophage-colony stimulating factor on survival of porcine type A spermatogonia cultured in KSOM. Biol Reprod 61, 225230.CrossRefGoogle ScholarPubMed
Do, J.T., Han, D.W., Gentile, L., Sobek-Klocke, I., Stehling, M., Lee, H.T. & Scholer, H.R. (2007). Erasure of cellular memory by fusion with pluripotent cells. Stem Cells 25, 10131020.CrossRefGoogle ScholarPubMed
Do, J.T., Han, D.W. & Schöler, H.R. (2006). Reprogramming somatic gene activity by fusion with pluripotent cells. Stem Cell Rev 2, 257264.CrossRefGoogle ScholarPubMed
Do, J.T. & Scholer, H.R. (2004). Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 22, 941949.Google Scholar
Do, J.T. & Scholer, H.R. (2006). Cell-cell fusion as a means to establish pluripotency. Ernst Schering Res Found Workshop, pp. 3545.Google Scholar
Do, J.T. & Scholer, H.R. (2010). Cell fusion-induced reprogramming. Methods Mol Biol 636, 179190.Google Scholar
Dobrinski, I. (2006). Germ cell transplantation in pigs—Advances and applications. Soc Reprod Fertil Suppl 62, 331339.Google ScholarPubMed
Dobrinski, I., Avarbock, M.R. & Brinster, R.L. (2000). Germ cell transplantation from large domestic animals into mouse testes. Mol Reprod Dev 57, 270279.Google Scholar
Durcova-Hills, G., Prelle, K., Muller, S., Stojkovic, M., Motlik, J., Wolf, E. & Brem, G. (1998). Primary culture of porcine PGCs requires LIF and porcine membrane-bound stem cell factor. Zygote 6, 271275.Google Scholar
Durcova-Hills, G., Tang, F.C., Doody, G., Tooze, R. & Surani, M.A. (2008). Reprogramming primordial germ cells into pluripotent stem cells. Plos One 3:10.1371/journal.pone.0003531.Google Scholar
Eggan, K., Baldwin, K., Tackett, M., Osborne, J., Gogos, J., Chess, A., Axel, R. & Jaenisch, R. (2004). Mice cloned from olfactory sensory neurons. Nature 428, 4449.CrossRefGoogle ScholarPubMed
Esteban, M.A., Xu, J., Yang, J., Peng, M., Qin, D., Li, W., Jiang, Z., Chen, J., Deng, K., Zhong, M., Cai, J., Lai, L. & Pei, D. (2009). Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284, 1763417640.CrossRefGoogle ScholarPubMed
Evans, M.J. & Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154156.CrossRefGoogle ScholarPubMed
Evans, M.J., Notarianni, E., Laurie, S. & Moor, R.M. (1990). Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocysts. Theriogenology 33, 125128.Google Scholar
Ezashi, T., Telugu, B.P.V.L., Alexenko, A.P., Sachdev, S., Sinha, S. & Roberts, R.M. (2009). Derivation of induced pluripotent stem cells from pig somatic cells. Proc Nat Acad Sci USA 106, 1099310998.CrossRefGoogle ScholarPubMed
Flasza, M., Shering, A.F., Smith, K., Andrews, P.W., Talley, P. & Johnson, P.A. (2003). Reprogramming in inter-species embryonal carcinoma-somatic cell hybrids induces expression of pluripotency and differentiation markers. Cloning Stem Cells 5, 339354.CrossRefGoogle ScholarPubMed
French, A.J., Adams, C.A., Anderson, L.S., Kitchen, J.R., Hughes, M.R. & Wood, S.H. (2008). Development of human cloned blastocysts following somatic cell nuclear transfer (SCNT) with adult fibroblasts. Stem Cells 26, 485493.Google Scholar
Fulka, J. & Fulka, H. (2007). Somatic cell nuclear transfer (SCNT) in mammals: The cytoplast and its reprogramming activities. Somat Cell Nucl Trans 591, 93102.Google Scholar
Galli, C., Lagutina, I., Crotti, G., Colleoni, S., Turini, P., Ponderato, N., Duchi, R. & Lazzari, G. (2003). Pregnancy: A cloned horse born to its dam twin. Nature 424, 635.CrossRefGoogle ScholarPubMed
Gerfen, R.W. & Wheeler, M.B. (1995). Isolation of embryonic cell-lines from porcine blastocysts. Anim Biotech 6, 114.CrossRefGoogle Scholar
Ghodsizadeh, A., Taei, A., Totonchi, M., Seifinejad, A., Gourabi, H., Pournasr, B., Aghdami, N., Malekzadeh, R., Almadani, N., Salekdeh, G.H. & Baharvand, H. (2010). Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Rev 6, 622632.Google Scholar
Giorgetti, A., Montserrat, N., Aasen, T., Gonzalez, F., Rodriguez-Piza, I., Vassena, R., Raya, A., Boue, S., Barrero, M.J., Corbella, B.A., Torrabadella, M., Veiga, A. & Izpisua Belmonte, J.C. (2009). Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell 5, 353357.Google Scholar
Goel, S., Fujihara, M., Tsuchiya, K., Takagi, Y., Minami, N., Yamada, M. & Imai, H. (2009). Multipotential ability of primitive germ cells from neonatal pig testis cultured in vitro. Reprod Fertil Dev 21, 696708.CrossRefGoogle ScholarPubMed
Gong, G., Roach, M.L., Jiang, L., Yang, X. & Tian, X.C. (2010). Culture conditions and enzymatic passaging of bovine ESC-like cells. Cell Reprogram 12, 151160.Google Scholar
Green, A.L., Wells, D.N. & Oback, B. (2007). Cattle cloned from increasingly differentiated muscle cells. Biol Reprod 7, 395406.Google Scholar
Haase, A., Olmer, R., Schwanke, K., Wunderlich, S., Merkert, S., Hess, C., Zweigerdt, R., Gruh, I., Meyer, J., Wagner, S., Maier, L.S., Han, D.W., Glage, S., Miller, K., Fischer, P., Scholer, H.R. & Martin, U. (2009). Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 5, 434441.Google Scholar
Habermann, F.A., Wuensch, A., Sinowatz, F. & Wolf, E. (2007). Reporter genes for embryogenesis research in livestock species. Theriogenology 68(S1), 116124.Google Scholar
Hall, V. (2008). Porcine embryonic stem cells: A possible source for cell replacement therapy. Stem Cell Rev 4, 275282.Google Scholar
Hall, V.J., Christensen, J., Gao, Y., Schmidt, M.H. & Hyttel, P. (2009). Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development. Dev Dyn 238, 20142024.Google Scholar
Han, D.W., Do, J.T., Gentile, L., Stehling, M., Lee, H.T. & Scholer, H.R. (2008). Pluripotential reprogramming of the somatic genome in hybrid cells occurs with the first cell cycle. Stem Cells 26, 445454.Google Scholar
Handyside, A., Hooper, M.L., Kaufmann, M.H. & Wilmut, I. (1987). Towards the isolation of embryonal stem cell lines from the sheep. Roux's Arch Dev Biol 196, 185190.CrossRefGoogle ScholarPubMed
Hansis, C., Barreto, G., Maltry, N. & Niehrs, C. (2004). Nuclear reprogramming of human somatic cells by Xenopus egg extract requires BRG1. Curr Biol 14, 14751480.CrossRefGoogle ScholarPubMed
Haridoss, S., Niemann, H., Kues, W.A., Moritz, T., Cantz, T., Martin, U., Schambach, A., Sgodda, M., Jagielska, J., Pfaff, N., Luettge, D. & Nowak-Imialek, M. (2009). Generation and characterisation of porcine induced pluripotent stem cells. Hum Gene Ther 20, 1523(Abstract).Google Scholar
Hasegawa, K., Zhan, P., Wei, Z., Pomeroy, J., Lu, W. & Pera, M. (2010). Comparison of reprogramming efficiency between transduction of reprogramming factors, cell-cell fusion, and cytoplast fusion. Stem Cells 28, 13381348.Google Scholar
He, S., Pant, D., Schiffmacher, A., Bischoff, S., Melican, D., Gavin, W. & Keefer, C. (2006). Developmental expression of pluripotency determining factors in caprine embryos: Novel pattern of NANOG protein localization in the nucleolus. Mol Reprod Dev 73, 15121522.CrossRefGoogle ScholarPubMed
Hochedlinger, K. & Jaenisch, R. (2002). Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 10351038.Google Scholar
Hochedlinger, K. & Jaenisch, R. (2007). On the cloning of animals from terminally differentiated cells. Nat Genet 39, 136137.CrossRefGoogle ScholarPubMed
Hochereau-de Reviers, M.T. & Perreau, C. (1993). In vitro culture of embryonic disc cells from porcine blastocysts. Reprod Nutr Dev 33, 475483.Google Scholar
Honaramooz, A., Megee, S.O. & Dobrinski, I. (2002). Germ cell transplantation in pigs. Biol Reprod 66, 2128.CrossRefGoogle ScholarPubMed
Hornen, N., Kues, W.A., Carnwath, J.W., Lucas-Hahn, A., Petersen, B., Hassel, P. & Niemann, H. (2007). Production of viable pigs from fetal somatic stem cells. Cloning Stem Cells 9, 364373.CrossRefGoogle ScholarPubMed
Hyun, S., Lee, G., Kim, D., Kim, H., Lee, S., Nam, D., Jeong, Y., Kim, S., Yeom, S., Kang, S., Han, J., Lee, B. & Hwang, W. (2003). Production of nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent protein. Biol Reprod 69, 10601068.Google Scholar
Inoue, K., Wakao, H., Ogonuki, N., Miki, H., Seino, K.I., Nambu-Wakao, R., Noda, S., Miyoshi, H., Koseki, H., Taniguchi, M. & Ogura, A. (2005). Generation of cloned mice by direct nuclear transfer from natural killer t cells. Curr Biol 15, 11141118.Google Scholar
Iwasaki, S., Campbell, K.H., Galli, C. & Akiyama, K. (2000). Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biol Reprod 62, 470475.CrossRefGoogle ScholarPubMed
Izadyar, F., Den Ouden, K., Creemers, L.B., Posthuma, G., Parvinen, M. & de Rooij, D.G. (2003). Proliferation and differentiation of bovine type A spermatogonia during long-term culture. Biol Reprod 68, 272281.Google Scholar
Izadyar, F., Pau, F., Marh, J., Slepko, N., Wang, T., Gonzalez, R., Ramos, T., Howerton, K., Sayre, C. & Silva, F. (2008). Generation of multipotent cell lines from a distinct population of male germ line stem cells. Reproduction 135, 771784.Google Scholar
Izadyar, F., Spierenberg, G.T., Creemers, L.B., den Ouden, K. & de Rooij, D.G. (2002). Isolation and purification of type A spermatogonia from the bovine testis. Reproduction 124, 8594.Google Scholar
Jia, W., Yang, W., Lei, A., Gao, Z., Yang, C., Hua, J., Huang, W., Ma, X., Wang, H. & Dou, Z. (2008). A caprine chimera produced by injection of embryonic germ cells into a blastocyst. Theriogenology 69, 340348.CrossRefGoogle ScholarPubMed
Kakegawa, R., Teramura, T., Takehara, T., Anzai, M., Mitani, T., Matsumoto, K., Saeki, K., Sagawa, N., Fukuda, K. & Hosoi, Y. (2008). Isolation and culture of rabbit primordial germ Cells. J Reprod Dev 54, 352357.CrossRefGoogle ScholarPubMed
Kanatsu-Shinohara, M., Lee, J., Inoue, K., Ogonuki, N., Miki, H., Toyokuni, S., Ikawa, M., Nakamura, T., Ogura, A. & Shinohara, T. (2008). Pluripotency of a single spermatogonial stem cell in mice. Biol Reprod 78, 681687.Google Scholar
Kanatsu-Shinohara, M., Ogonuki, N., Inoue, K., Miki, H., Ogura, A., Toyokuni, S. & Shinohara, T. (2003). Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 69, 612616.Google Scholar
Kato, Y., Tani, T. & Tsunoda, Y. (2000). Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. J Reprod Fertil 120, 231237.Google Scholar
Keefer, C.L., Pant, D., Blomberg, L. & Talbot, N.C. (2007). Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim Reprod Sci 98, 147168.Google Scholar
Kikyo, N., Wade, P.A., Guschin, D., Ge, H. & Wolffe, A.P. (2000). Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. Science 289, 23602362.Google Scholar
Kim, D., Kim, C.H., Moon, J.I., Chung, Y.G., Chang, M.Y., Han, B.S., Ko, S., Yang, E., Cha, K.Y., Lanza, R. & Kim, K.S. (2009a). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472476.Google Scholar
Kim, H.S., Son, H.Y., Kim, S., Lee, G.S., Park, C.H., Kang, S.K., Lee, B.C., Hwang, W.S. & Lee, C.K. (2007). Isolation and initial culture of porcine inner cell masses derived from in vitro-produced blastocysts. Zygote 15, 5563.Google Scholar
Kim, J.B., Zaehres, H., Arauzo-Bravo, M.J. & Scholer, H.R. (2009b). Generation of induced pluripotent stem cells from neural stem cells. Nat Protoc 4, 14641470.Google Scholar
Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M.J., Ji, H., Ehrlich, L.I., Yabuuchi, A., Takeuchi, A., Cunniff, K.C., Hongguang, H., McKinney-Freeman, S., Naveiras, O., Yoon, T.J., Irizarry, R.A., Jung, N., Seita, J., Hanna, J., Murakami, P., Jaenisch, R., Weissleder, R., Orkin, S.H., Weissman, I.L., Feinberg, A.P. & Daley, G.Q. (2010a). Epigenetic memory in induced pluripotent stem cells. Nature 467, 285290.Google Scholar
Kim, S., Kim, J.H., Lee, E., Jeong, Y.W., Hossein, M.S., Park, S.M., Park, S.W., Lee, J.Y., Jeong, Y.I., Kim, H.S., Kim, Y.W., Hyun, S.H. & Hwang, W.S. (2010b). Establishment and characterization of embryonic stem-like cells from porcine somatic cell nuclear transfer blastocysts. Zygote 18, 93101.Google Scholar
Klassen, H., Warfvinge, K., Schwartz, P.H., Kiilgaard, J.F., Shamie, N., Jiang, C., Samuel, M., Scherfig, E., Prather, R.S. & Young, M.J. (2008). Isolation of progenitor cells from GFP-transgenic pigs and transplantation to the retina of allorecipients. Cloning Stem Cells 10, 391402.Google Scholar
Ko, K., Arauzo-Bravo, M.J., Kim, J., Stehling, M. & Scholer, H.R. (2010). Conversion of adult mouse unipotent germline stem cells into pluripotent stem cells. Nat Protoc 5, 921928.Google Scholar
Ko, K., Tapia, N., Wu, G., Kim, J.B., Bravo, M.J., Sasse, P., Glaser, T., Ruau, D., Han, D.W., Greber, B., Hausdörfer, K., Sebastiano, V., Stehling, M., Fleischmann, B.K., Brüstle, O., Zenke, M. & Schöler, H.R. (2009). Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 5, 8796.Google Scholar
Kobolak, J., Bodo, S., Rungsiwiwut, R., Meng, Q.G., Adorjan, M., Virutamasen, P., Techakumphu, M. & Dinnyes, A. (2010). Generation of mouse embryonic stem cell lines from zona-free nuclear transfer embryos. Cell Reprogr 12, 105113.Google Scholar
Kubota, H., Avarbock, M.R. & Brinster, R.L. (2004). Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci USA 101, 1648916494.Google Scholar
Kues, W.A. & Niemann, H. (2004). The contribution of farm animals to human health. Trends Biotechnol 22, 286294.Google Scholar
Kues, W.A., Petersen, B., Mysegades, W., Carnwath, J.W. & Niemann, H. (2005). Isolation of murine and porcine fetal stem cells from somatic tissue. Biol Reprod 72, 10201028.Google Scholar
Kues, W.A., Sudheer, S., Herrmann, D., Carnwath, J.W., Havlicek, S., Besenfelder, U., Lehrach, H., Adjaye, J. & Niemann, H. (2008). Genome-wide expression profiling reveals distinct clusters of transcriptional regulation during bovine preimplantation development in vivo. Proc Natl Acad Sci USA 105, 1976819773.Google Scholar
Kuhholzer, B., Baguisi, A. & Overstrom, E.W. (2000). Long-term culture and characterization of goat primordial germ cells. Theriogenology 53, 10711079.Google Scholar
Kwon, D.K., Hong, S.G., Park, H.J., Kang, J.T., Koo, O.J. & Lee, B.C. (2009). Epiblast isolation by a new four stage method (peeling) from whole bovine cloned blastocysts. Cell Biol Int 33, 309317.Google Scholar
Labosky, P.A., Barlow, D.P. & Hogan, B.L.M. (1994). Mouse embryonic germ (EG) cell-lines—Transmission through the germline and differences in the methylation imprint of insulin-like growth-factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell-lines. Development 120, 31973204.Google Scholar
Lagutina, I., Lazzari, G., Duchi, R., Colleoni, S., Ponderato, N., Turini, P., Crotti, G. & Galli, C. (2005). Somatic cell nuclear transfer in horses: Effect of oocyte morphology, embryo reconstruction method and donor cell type. Reproduction 130, 559567.Google Scholar
Lai, L., Park, K.W., Cheong, H.T., Kuhholzer, B., Samuel, M., Bonk, A., Im, G.S., Rieke, A., Day, B.N., Murphy, C.N., Carter, D.B. & Prather, R.S. (2002). Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Mol Reprod Dev 62, 300306.Google Scholar
Lanza, R.P., Chung, H.Y., Yoo, J.J., Wettstein, P.J., Blackwell, C., Borson, N., Hofmeister, E., Schuch, G., Soker, S., Moraes, C.T., West, M.D. & Atala, A. (2002). Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol 20, 689696.Google Scholar
Ledda, S., Bogliolo, L., Bebbere, D., Ariu, F. & Pirino, S. (2010). Characterization, isolation and culture of primordial germ cells in domestic animals: Recent progress and insights from the ovine species. Theriogenology 74, 534543.CrossRefGoogle ScholarPubMed
Lee, B.C., Kim, M.K., Jang, G., Oh, H.J., Yuda, F., Kim, H.J., Hossein, M.S., Kim, J.J., Kang, S.K., Schatten, G. & Hwang, W.S. (2005). Dogs cloned from adult somatic cells. Nature 436, 641.Google Scholar
Lee, C.K. & Piedrahita, J.A. (2000). Effects of growth factors and feeder cells on porcine primordial germ cells in vitro. Cloning 2, 197205.Google Scholar
Lee, C.K., Scules, N., Newton, G. & Piedrahita, J.A. (1998). Isolation and initial characterization of primordial germ cells (PGC)-derived from goat, rabbit and rats. Theriogenology 49, 388(Abstract).Google Scholar
Lee, C.K., Weaks, R.L., Johnson, G.A., Bazer, F.W. & Piedrahita, J.A. (2000). Effects of protease inhibitors and antioxidants on in vitro survival of porcine primordial germ cells. Biol Reprod 63, 887897.Google Scholar
Li, J., Ishli, T., Feinstein, P. & Mombaerts, P. (2004a). Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature 428, 393399.Google Scholar
Li, M., Hou, Y., Sun, X.F., Sun, Q.Y. & Wang, W.H. (2004b). Improved isolation and culture of embryonic stem cells from Chinese miniature pig. J Reprod Dev 50, 237244.Google Scholar
Li, M., Li, Y.H., Hou, Y., Sun, X.F., Sun, Q. & Wang, W.H. (2004c). Isolation and culture of pluripotent cells from in vitro produced porcine embryos. Zygote 12, 4348.CrossRefGoogle ScholarPubMed
Li, M., Zhang, D., Hou, Y., Jiao, L., Zheng, X. & Wang, W.H. (2003). Isolation and culture of embryonic stem cells from porcine blastocysts. Mol Reprod Dev 65, 429434.Google Scholar
Li, P., Tong, C., Mehrian-Shai, R., Jia, L., Wu, N., Yan, Y., Maxson, R.E., Schulze, E.N., Song, H., Hsieh, C.L., Pera, M.F. & Ying, Q.L. (2008). Germline competent embryonic stem cells derived from rat blastocysts. Cell 135, 12991310.Google Scholar
Li, W., Wei, W., Zhu, S., Zhu, J., Shi, Y., Lin, T., Hao, E., Hayek, A., Deng, H. & Ding, S. (2009). Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4, 1619.Google Scholar
Li, X., Zhou, S.G., Imreh, M.P., Ahrlund-Richter, L. & Allen, W.R. (2006a). Horse embryonic stem cell lines from the proliferation of inner cell mass cells. Stem Cells Dev 15, 523531.Google Scholar
Li, Z., Sun, X., Chen, J., Liu, X., Wisely, S.M., Zhou, Q., Renard, J.P., Leno, G.H. & Engelhardt, J.F. (2006b). Cloned ferrets produced by somatic cell nuclear transfer. Dev Biol 293, 439448.Google Scholar
Liao, J., Cui, C., Chen, S., Ren, J., Chen, J., Gao, Y., Li, H., Jia, N., Cheng, L., Xiao, H. & Xiao, L. (2009). Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4, 1115.CrossRefGoogle ScholarPubMed
Liu, H.S., Zhu, F.F., Yong, J., Zhang, P.B., Hou, P.P., Li, H.G., Jiang, W., Cai, J., Liu, M.K. Cui, Qu, X.X., Xiang, T.T., Lu, D.Y., Chi, X.C., Gao, G., Ji, W.Z., Ding, M.X. & Deng, H.K. (2008). Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3, 587590.Google Scholar
Loh, Y.H., Agarwal, S., Park, I.H., Urbach, A., Huo, H., Heffner, G.C., Kim, K., Miller, J.D., Ng, K. & Daley, G.Q. (2009). Generation of induced pluripotent stem cells from human blood. Blood 113, 54765479.Google Scholar
Ma, D.K., Chiang, C.H., Ponnusamy, K., Ming, G.L. & Song, H. (2008). G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells. Stem Cells 26, 21312141.Google Scholar
Markoulaki, S., Hanna, J., Beard, C., Carey, B.W., Cheng, A.W., Lengner, C.J., Dausman, J.A., Fu, D., Gao, Q., Wu, S., Cassady, J.P. & Jaenisch, R. (2009). Transgenic mice with defined combinations of drug-inducible reprogramming factors. Nat Biotechnol 27, 169171.CrossRefGoogle ScholarPubMed
Marret, C. & Durand, P. (2000). Culture of porcine spermatogonia: Effects of purification of the germ cells, extracellular matrix and fetal calf serum on their survival and multiplication. Reprod Nutr Dev 40, 305319.Google Scholar
Martin, G. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78, 76347638.Google Scholar
Matsui, Y. (1998). Developmental fates of the mouse germ cell line. Int J Dev Biol 42, 10371042.Google Scholar
Matsui, Y. & Tokitake, Y. (2009). Primordial germ cells contain subpopulations that have greater ability to develop into pluripotential stem cells. Dev Growth Differ 51, 657667.Google Scholar
Matsui, Y., Toksoz, D., Nishikawa, S., Nishikawa, S., Williams, D., Zsebo, K. & Hogan, B.L. (1991). Effect of steel factor and leukemia inhibitory factor on murine primordial germ-cells in culture. Nature 353, 750752.Google Scholar
Matsui, Y., Zsebo, K. & Hogan, B.L. (1992). Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841847.Google Scholar
Matsunari, H., Onodera, M., Tada, N., Mochizuki, H., Karasawa, S., Haruyama, E., Nakayama, N., Saito, H., Ueno, S., Kurome, M., Miyawaki, A. & Nagashima, H. (2008). Transgenic-cloned pigs systemically expressing red fluorescent protein, Kusabira-Orange. Cloning Stem Cells 10, 313323.Google Scholar
Matveeva, N.M., Shilov, A.G., Kaftanovskaya, E.M., Maximovsky, L.P., Zhelezova, A.I., Golubitsa, A.N., Bayborodin, S.I., Fokina, M.M. & Serov, O.L. (1998). In vitro and in vivo study of pluripotency in intraspecific hybrid cells obtained by fusion of murine embryonic stem cells with splenocytes. Mol Reprod Dev 50, 128138.Google Scholar
Meinecke-Tillmann, S. & Meinecke, B. (1996). Isolation of ES-like cell lines from ovine and caprine pre-implantation embryos. J Animal Breed Gen 113, 413426.Google Scholar
Miller, R.A. & Ruddle, F.H. (1976). Pluripotent teratocarcinoma-thymus somatic-cell hybrids. Cell 9, 4555.Google Scholar
Miller, R.A. & Ruddle, F.H. (1977a). Properties of teratocarcinoma-thymus somatic-cell hybrids. Somat Cell Genet 3, 247261.Google Scholar
Miller, R.A. & Ruddle, F.H. (1977b). Teratocarcinoma X friend erythroleukemia cell hybrids resemble their pluripotent embryonal carcinoma parent. Develop Biol 56, 157173.Google Scholar
Mitalipov, S. & Wolf, S. (2009). Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol 114, 185199.Google Scholar
Mitalipova, M., Beyhan, Z. & First, N.L. (2001). Pluripotency of bovine embryonic cell line derived from precompacting embryos. Cloning 3, 5967.Google Scholar
Miyamoto, K., Furusawa, T., Ohnuki, M., Goel, S., Tokunaga, T., Minami, N., Yamada, M., Ohsumi, K. & Imai, H. (2007). Reprogramming events of mammalian somatic cells induced by Xenopus laevis egg extracts. Mol Reprod Dev 74, 12681277.Google Scholar
Miyamoto, K., Tsukiyama, T., Yang, Y., Li, N., Minami, N., Yamada, M. & Imai, H. (2009). Cell-free extracts from mammalian oocytes partially induce nuclear reprogramming in somatic cells. Biol Reprod 80, 935943.Google Scholar
Miyamoto, K., Yamashita, T., Tsukiyama, T., Kitamura, N., Minami, N., Yamada, M. & Imai, H. (2008). Reversible membrane permeabilization of mammalian cells treated with digitonin and its use for inducing nuclear reprogramming by Xenopus egg extracts. Cloning Stem Cells 10, 535542.Google Scholar
Miyoshi, K., Mori, H., Mizobe, Y., Akasaka, E., Ozawa, A., Yoshida, M. & Sato, M. (2009). Development of a noninvasive monitoring system for evaluation of Oct-3/4 promoter status in miniature pig somatic cell nuclear transfer embryos. J Reprod Dev 55, 661669.Google Scholar
Miyoshi, K., Taguchi, Y., Sendai, Y., Hoshi, H. & Sato, E. (2000). Establishment of a porcine cell line from in vitro-produced blastocysts and transfer of the cells into enucleated oocytes. Biol Reprod 62, 16401646.Google Scholar
Mizutani, E., Ohta, H., Kishigami, S., Thuan, N.V., Hikichi, T., Wakayama, S., Kosaka, M., Sato, E. & Wakayama, T. (2006). Developmental ability of cloned embryos from neural stem cells. Reproduction 132, 849857.Google Scholar
Moore, K. & Piedrahita, J.A. (1996). Effects of heterologous hematopoietic cytokines on in vitro differentiation of cultured porcine inner cell masses. Mol Reprod Dev 45, 139144.Google Scholar
Moore, K. & Piedrahita, J.A. (1997). The effects of human leukemia inhibitory factor (hLIF) and culture medium on in vitro differentiation of cultured porcine inner cell mass (pICM). In Vitro Cell Dev Biol Anim 33, 6271.Google Scholar
Moretti, A., Bellin, M., Welling, A., Jung, C.B., Lam, J.T., Bott-Flugel, L., Dorn, T., Goedel, A., Hohnke, C., Hofmann, F., Seyfarth, M., Sinnecker, D., Schomig, A. & Laugwitz, K.L. (2010). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363, 13971409.Google Scholar
Moriguchi, H., Chung, R.T., Mihara, M. & Sato, C. (2010). Generation of human induced pluripotent stem cells from liver progenitor cells by only small molecules. Hepatology 51, 18101819.Google Scholar
Mueller, S., Prelle, K., Rieger, N., Petznek, H., Lassnig, C., Luksch, U., Aigner, B., Baetscher, M., Wolf, E., Mueller, M. & Brem, G. (1999). Chimeric pigs following blastocyst injection of transgenic porcine primordial germ cells. Mol Reprod Dev 54, 244254.Google Scholar
Muñoz, M., Díez, C., Caamaño, J.N., Jouneau, A., Hue, I. & Gómez, E. (2008a). Embryonic stem cells in cattle. Reprod Domest Anim 43(S4), 3273.Google Scholar
Muñoz, M., Rodriguez, A., De Frutos, C., Caamano, J.N., Diez, C., Facal, N. & Gomez, E. (2008b). Conventional pluripotency markers are unspecific for bovine embryonic-derived cell-lines. Theriogenology 69, 11591164.Google Scholar
Neri, T., Monti, M., Rebuzzini, P., Merico, V., Garagna, S., Redi, C.A. & Zuccotti, M. (2007). Mouse fibroblasts are reprogrammed to Oct-4 and Rex-1 gene expression and alkaline phosphatase activity by embryonic stem cell extracts. Cloning Stem Cells 9, 394406.Google Scholar
Niemann, H. & Kues, W.A. (2003). Application of transgenesis in livestock for agriculture and biomedicine. Anim Reprod Sci 79, 291317.Google Scholar
Niemann, H. & Kues, W.A. (2007). Transgenic farm animals: An update. Reprod Fertil Dev 19, 762770.Google Scholar
Niemann, H., Rath, D. & Wrenzycki, C. (2003). Advances in biotechnology: New tools in future pig production for agriculture and biomedicine. Reprod Domest Anim 38, 8289.CrossRefGoogle ScholarPubMed
Niemann, H., Tian, X.C., King, W.A. & Lee, R.S.F. (2008). Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction 135, 151163.Google Scholar
Notarianni, E., Galli, C., Laurie, S., Moor, R.M. & Evans, M.J. (1991). Derivation of pluripotent, embryonic cell lines from the pig and sheep. J Reprod Fertil Suppl 43, 255260.Google Scholar
Notarianni, E., Laurie, S., Moor, R.M. & Evans, M.J. (1990). Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. J Reprod Fertil Suppl 41, 5156.Google Scholar
Nowak-Imialek, M., Kues, W.A., Petersen, B., Lucas-Hahn, A., Herrmann, D., Haridoss, S., Oropeza, M., Lemme, E., Schöler, H.R., Carnwath, J.W. & Niemann, H. (2010a). Oct4-enhanced green fluorescent protein transgenic pigs: A new large animal model for reprogramming studies. Stem Cell Develop doi:10.1089/scd.2010.0399(published online ahead of print).Google Scholar
Nowak-Imialek, M., Kues, W.A., Rudolph, C., Schlegelberger, B., Taylor, U., Carnwath, J.W. & Niemann, H. (2010b). Preferential loss of porcine chromosomes in reprogrammed interspecies cell hybrids. Cell Reprogram 12, 5565.Google Scholar
Oback, B. & Wells, D.N. (2007). Donor cell differentiation, reprogramming, and cloning efficiency: Elusive or illusive correlation? Mol Reprod Dev 74, 646654.Google Scholar
Ock, S.A., Mohana-Kumar, B., Jin, H.F., Shi, L.Y., Lee, S.L., Choe, S.Y. & Rho, G.J. (2005). Establishment of porcine embryonic stem cell line derived from in vitro blastocysts. Reprod Fertil Dev 17, 238(Abstract).Google Scholar
Oda, Y., Yoshimura, Y., Ohnishi, H., Tadokoro, M., Katsube, Y., Sasao, M., Kubo, Y., Hattori, K., Saito, S., Horimoto, K., Yuba, S. & Ohgushi, H. (2010). Induction of pluripotent stem cells from human third molar mesenchymal stromal cells. J Biol Chem 285, 2927029278.Google Scholar
Oh, H.J., Kim, M.K., Jang, G., Kim, H.J., Hong, S.G., Park, J.E., Park, K., Park, C., Sohn, S.H., Kim, D.Y., Shin, N.S. & Lee, B.C. (2008). Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem. Theriogenology 70, 638647.Google Scholar
Ohmura, M., Yoshida, S., Ide, Y., Nagamatsu, G., Suda, T. & Ohbo, K. (2004). Spatial analysis of germ stem cell development in Oct-4/EGFP transgenic mice. Arch Histol Cytol 67, 285296.Google Scholar
Okita, K., Ichisaka, T. & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448, 313317.Google Scholar
Okita, K., Nakagawa, M., Hong, H.J., Ichisaka, T. & Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949953.Google Scholar
Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., Hanada, H. & Perry, A.C. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science 289, 11881190.Google Scholar
Ozawa, A., Akasaka, E., Watanabe, S., Yoshida, M., Miyoshi, K. & Sato, M. (2010). Usefulness of a non-invasive reporter system for monitoring reprogramming state in pig cells: Results of a cell fusion experiment. J Reprod Dev 56, 363369.Google Scholar
Pant, D. & Keefer, C.L. (2009). Expression of pluripotency-related genes during bovine inner cell mass explant culture. Cloning Stem Cells 11, 355365.Google Scholar
Paris, D.B. & Stout, T.A. (2010). Equine embryos and embryonic stem cells: Defining reliable markers of pluripotency. Theriogenology 74, 516524.CrossRefGoogle ScholarPubMed
Park, K.W., Lai, L., Cheong, H.T., Cabot, R., Sun, Q.Y., Wu, G., Rucker, E.B., Durtschi, D., Bonk, A., Samuel, M., Rieke, A., Day, B.N., Murphy, C.N., Carter, D.B. & Prather, R.S. (2002). Mosaic gene expression in nuclear transfer-derived embryos and the production of cloned transgenic pigs from ear-derived fibroblasts. Biol Reprod 66, 10011005.Google Scholar
Park, T.S. & Han, J.Y. (2000). Derivation and characterization of pluripotent embryonic germ cells in chicken. Mol Reprod Dev 56, 475482.Google Scholar
Pawar, S.S., Malakar, D., De, A.K & Akshey, Y.S. (2009). Stem cell-like outgrowths from in vitro fertilized goat blastocysts. Indian J Exp Biol 47, 635642.Google Scholar
Pereira, C.F., Terranova, R., Ryan, N.K., Santos, J., Morris, K.J., Cui, W., Merkenschlager, M. & Fisher, A.G. (2008). Heterokaryon-based reprogramming of human B lymphocytes for pluripotency requires Oct4 but not Sox2. PLoS Genet 4, e1000170.Google Scholar
Petersen, B., Lucas-Hahn, A., Oropeza, M., Hornen, N., Lemme, E., Hassel, P., Queisser, A.L. & Niemann, H. (2008). Development and validation of a highly efficient protocol of porcine somatic cloning using preovulatory embryo transfer in peripubertal gilts. Cloning Stem Cells 10, 355362.Google Scholar
Petkov, S.G. & Anderson, G.B. (2008). Culture of porcine embryonic germ cells in serum-supplemented and serum-free conditions: The effects of serum and growth factors on primary and long-term culture. Cloning Stem Cells 10, 263276.Google Scholar
Piedrahita, J.A., Anderson, G.B. & Bondurant, R.H. (1990a). Influence of feeder layer type on the efficiency of isolation of porcine embryo-derived cell lines. Theriogenology 34, 865877.Google Scholar
Piedrahita, J.A., Anderson, G.B. & Bondurant, R.H. (1990b). On the isolation of embryonic stem cells: Comparative behavior of murine, porcine and ovine embryos. Theriogenology 34, 879901.Google Scholar
Piedrahita, J.A., Anderson, G.B., Martin, G.R., Bondurant, R.H. & Pashen, R.L. (1988). Isolation of embryonic stem cell-like colonies from porcine embryos. Theriogenology 29, 286.Google Scholar
Piedrahita, J.A., Moore, K., Oetama, B., Lee, C.K., Scales, N., Ramsoondar, J., Bazer, F.W. & Ott, T. (1998). Generation of transgenic porcine chimeras using primordial germ cell-derived colonies. Biol Reprod 58, 13211329.Google Scholar
Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. & Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143147.Google Scholar
Polejaeva, I.A., Chen, S.H., Vaught, T.D., Page, R.L., Mullins, J., Ball, S., Dai, Y., Boone, J., Walker, S., Ayares, D.L., Colman, A. & Campbell, K.H. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 8690.Google Scholar
Puy, L., Chuva de Sousa Lopes, S.M., Haagsman, H.P. & Roelen, B.A. (2010). Differentiation of porcine inner cell mass cells into proliferating neural cells. Stem Cells Dev 19, 6170.Google Scholar
Rao, M. (2004). Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells. Develop Biol 275, 269286.Google Scholar
Resnick, J.L., Bixler, L.S., Cheng, L. & Donovan, P.J. (1992). Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550551.Google Scholar
Rideout, W.M. 3rd, Hochedlinger, K., Kyba, M., Daley, G.Q. & Jaenisch, R. (2002). Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109, 1727.CrossRefGoogle ScholarPubMed
Rizos, D., Ward, F., Duffy, P., Boland, M.P. & Lonergan, P. (2002). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: Implications for blastocyst yield and blastocyst quality. Mol Reprod Dev 61, 234248.Google Scholar
Rui, R., Shim, H., Moyer, A.L., Anderson, D.L., Penedo, C.T., Rowe, J.D., BonDurant, R.H. & Anderson, G.B. (2004). Attempts to enhance production of porcine chimeras from embryonic germ cells and preimplantation embryos. Theriogenology 61, 12251235.Google Scholar
Saito, S., Sawai, K., Ugai, H., Moriyasu, S., Minamihashi, A., Yamamoto, Y., Hirayama, H., Kageyama, S., Pan, J., Murata, T., Kobayashi, Y., Obata, Y. & Yokoyama, K.K. (2003). Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochem Biophys Res Commun 309, 104113.Google Scholar
Saito, S., Strelchenko, N. & Niemann, H. (1992). Bovine embryonic stem cell-like cell lines cultured over several passages. Develop Biol 201, 134141.Google Scholar
Saito, S., Ugai, H., Sawai, K., Yamamoto, Y., Minamihashi, A., Kurosaka, K., Kobayashi, Y., Murata, T., Obata, Y. & Yokoyama, K.K. (2002). Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro. FEBS Lett 531, 389396.Google Scholar
Serov, O., Matveeva, N., Kuznetsov, S., Kaftanovskaya, E. & Mittmann, J. (2001). Embryonic hybrid cells: A powerful tool for studying pluripotency and reprogramming of the differentiated cell chromosomes. Anais Da Academia Brasileira De Ciencias 73, 561568.Google Scholar
Shamblott, M.J., Axelman, J., Wang, S.P., Bugg, E.M., Littlefield, J.W., Donovan, P.J., Blumenthal, P.D., Huggins, G.R. & Gearhart, J.D. (1999). Derivation of pluripotent stem cells from cultured human primoridal germ cells. Proc Natl Acad Sci USA 96, 1162.Google Scholar
Shi, D., Lu, F., Wei, Y., Cui, K., Yang, S., Wei, J. & Liu, Q. (2007). Buffaloes (bubalus bubalis) cloned by nuclear transfer of somatic cells. Biol Reprod 77, 285291.Google Scholar
Shi, Y., Desponts, C., Do, J.T., Hahm, H.S., Scholer, H.R. & Ding, S. (2008). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3, 568574.Google Scholar
Shim, H., Gutierrezadan, A., Chen, L.R., BonDurant, R.H., Behboodi, E. & Anderson, G.B. (1997). Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol Reprod 57, 10891095.Google Scholar
Shimada, H., Nakada, A., Hashimoto, Y., Shigeno, K., Shionoya, Y. & Nakamura, T. (2010). Generation of canine-induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol Reprod Dev 77, 2.Google Scholar
Shin, T., Kraemer, D., Pryor, J., Liu, L., Rugila, J., Howe, L., Buck, S., Murphy, K., Lyons, L. & Westhusin, M. (2002). A cat cloned by nuclear transplantation. Nature 415, 859860.Google Scholar
Shiue, Y.L., Liou, J.F., Shiau, J.W., Yang, J.R., Chen, Y.H., Tailiu, J.J. & Chen, L.R. (2006). In vitro culture period but not the passage number influences the capacity of chimera production of inner cell mass and its deriving cells from porcine embryos. Anim Reprod Sci 93, 134143.Google Scholar
Silva, J., Chambers, I., Pollard, S. & Smith, A. (2006). Nanog promotes transfer of pluripotency after cell fusion. Nature 441, 9971001.Google Scholar
Sims, M. & First, N.L. (1994). Production of calves by transfer of nuclei from cultured inner cell mass cells. Proc Natl Acad Sci USA 91, 61436147.Google Scholar
Smith, K.P., Luong, M.X. & Stein, G.S. (2009). Pluripotency: Toward a gold standard for human ES and iPS cells. J Cell Physiol 220, 2129.Google Scholar
Smith, R.K., Korda, M., Blunn, G.W. & Goodship, A.E. (2003). Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment. Equine Vet J 35, 99102.Google Scholar
Smith, R.K. & Webbon, P.M. (2005). Harnessing the stem cell for the treatment of tendon injuries: Heralding a new dawn? Br J Sports Med 39, 582584.Google Scholar
Sommer, C.A., Stadtfeld, M., Murphy, G.J., Hochedlinger, K., Kotton, D.N. & Mostoslavsky, G. (2009). Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 27, 543549.Google Scholar
Squires, E.L., Carnevale, E.M., McCue, P.M. & Bruemmer, J.E. (2003). Embryo technologies in the horse. Theriogenology 59, 151170.Google Scholar
Stadtfeld, M., Brennand, K. & Hochedlinger, K. (2008a). Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 18, 890894.Google Scholar
Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. (2008b). Induced pluripotent stem cells generated without viral integration. Science 322, 945949.Google Scholar
Stice, S.L., Strelchenko, N.S., Keefer, C.L. & Matthews, L. (1996). Pluripotent bovine embryonic cell lines direct embryonic development following nuclear transfer. Biol Reprod 54, 100110.Google Scholar
Strojek, R.M., Reed, M.A., Hoover, J.L. & Wagner, T.E. (1990). A method for cultivating morphologically undifferentiated embryonic stem cells from porcine blastocysts. Theriogenology 33, 901913.Google Scholar
Sumer, H., Jones, K.L., Liu, J., Heffernan, C., Tat, P.A., Upton, K.R. & Verma, P.J. (2010). Reprogramming of somatic cells after fusion with induced pluripotent stem cells and nuclear transfer embryonic stem cells. Stem Cells Dev 19, 239246.Google Scholar
Surani, M.A. (2001). Reprogramming of genome function through epigenetic inheritance. Nature 414, 122128.Google Scholar
Tabar, V., Tomishima, M., Panagiotakos, G., Wakayama, S., Menon, J., Chan, B., Mizutani, E., Al-Shamy, G., Ohta, H., Wakayama, T. & Studer, L. (2008). Therapeutic cloning in individual parkinsonian mice. Nat Med 14, 379381.Google Scholar
Tada, M., Tada, T., Lefebvre, L., Barton, S.C. & Surani, M.A. (1997). Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J 16, 65106520.Google Scholar
Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. & Tada, T. (2001). Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11, 15531558.Google Scholar
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861872.Google Scholar
Takahashi, K. & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663676.Google Scholar
Talbot, N.C., Powell, A.M., Camp, M. & Ealy, A.D. (2007). Establishment of a bovine blastocyst-derived cell line collection for the comparative analysis of embryos created in vivo and by in vitro fertilization, somatic cell nuclear transfer, or parthenogenetic activation. In Vitro Cell Dev Biol Anim 43, 5971.Google Scholar
Talbot, N.C., Powell, A.M. & Garrett, W.M. (2002). Spontaneous differentiation of porcine and bovine embryonic stem cells (epiblast) into astrocytes or neurons. In Vitro Cell Dev Biol Anim 38, 191197.Google Scholar
Talbot, N.C., Powell, A.M. & Rexroad, C.E. Jr. (1995). In vitro pluripotency of epiblasts derived from bovine blastocysts. Mol Reprod Dev 42, 3552.Google Scholar
Talbot, N.C., Rexroad, C.E. Jr., Pursel, V.G. & Powell, A.M. (1993a). Alkaline phosphatase staining of pig and sheep epiblast cells in culture. Mol Reprod Dev 36, 139147.Google Scholar
Talbot, N.C., Rexroad, C.E. Jr., Pursel, V.G., Powell, A.M. & Nel, N.D. (1993b). Culturing the epiblast cells of the pig blastocyst. In Vitro Cell Dev Biol Anim 29A, 543554.Google Scholar
Taranger, C.K., Noer, A., Sorensen, A.L., Hakelien, A.M., Boquest, A.C. & Collas, P. (2005). Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 16, 57195735.Google Scholar
Tat, P.A., Sumer, H., Jones, K.L., Upton, K. & Verma, P.J. (2010). The efficient generation of induced pluripotent stem (iPS) cells from adult mouse adipose tissue-derived and neural stem cells. Cell Transplant 19, 525536.Google Scholar
Tegelenbosch, R.A. & de Rooij, D.G. (1993). A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res 290, 193200.Google Scholar
Telugu, B.P., Ezashi, T. & Roberts, R.M. (2010). The promise of stem cell research in pigs and other ungulate species. Stem Cell Rev 6, 3141.Google Scholar
Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S. & Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 11451147.Google Scholar
Thomson, J.A., Kalishman, J., Golos, T.G., Durning, M., Harris, C.P., Becker, R.A. & Hearn, J.P. (1995). Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 92, 78447848.Google Scholar
Tsung, H.C., Du, Z.W., Rui, R., Li, X.L., Bao, L.P., Wu, J., Bao, S.M. & Yao, Z. (2003). The culture and establishment of embryonic germ (EG) cell lines from Chinese mini swine. Cell Res 13, 195202.Google Scholar
Vackova, I. & Madrova, J. (2006). Porcine embryonic stem-like cells, an animal model for human stem cell therapy. Hum Reprod 21(S1), 163(Abstract).Google Scholar
Vackova, I., Ungrova, A. & Lopes, F. (2007). Putative embryonic stem cell lines from pig embryos. J Reprod Dev 53, 11371149.Google Scholar
Van de Velde, H., Cauffman, G., Tournaye, H., Devroey, P. & Liebaers, I. (2008). The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum Reprod 23, 17421747.Google Scholar
Van Stekelenburg-Hamers, A.E., Van Achterberg, T.A., Rebel, H.G., Fléchon, J.E., Campbell, K.H., Weima, S.M. & Mummery, C.L. (1995). Isolation and characterization of permanent cell lines from inner cell mass cells of bovine blastocysts. Mol Reprod Dev 40, 444454.Google Scholar
Vassiliev, I., Vassilieva, S., Beebe, L.F., Harrison, S.J., McIlfatrick, S.M. & Nottle, M.B. (2010a). In vitro and in vivo characterization of putative porcine embryonic stem cells. Cell Reprogram 12, 223230.Google Scholar
Vassiliev, I., Vassilieva, S., Beebe, L.F., McIlfatrick, S.M., Harrison, S.J. & Nottle, M.B. (2010b). Development of culture conditions for the isolation of pluripotent porcine embryonal outgrowths from in vitro produced and in vivo derived embryos. J Reprod Dev 56, 546551.Google Scholar
Wadman, M. (2007). Cloning special: Dolly: A decade on. Nature 445, 800801.Google Scholar
Wakayama, S., Ohta, H., Kishigami, S., Van Thuan, N., Hikichi, T., Mizutani, E., Miyake, M. & Wakayama, T. (2005). Establishment of male and female nuclear transfer embryonic stem cell lines from different mouse strains and tissues. Biol Reprod 72, 932936.Google Scholar
Wakayama, T., Perry, A.C., Zuccotti, M., Johnson, K.R. & Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369374.Google Scholar
Wakayama, T., Tabar, V., Rodriguez, I., Perry, A.C., Studer, L. & Mombaerts, P. (2001). Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292, 740743.Google Scholar
Wang, L., Duan, E., Sung, L.Y., Jeong, B.S., Yang, X. & Tian, X.C. (2005). Generation and characterization of pluripotent stem cells from cloned bovine embryos. Biol Reprod 73, 149155.Google Scholar
Wani, N.A., Wernery, U., Hassan, F.A.H., Wernery, R. & Skidmore, J.A. (2010). Production of the first cloned camel by somatic cell nuclear transfer. Biol Reprod 82, 373379.Google Scholar
Webster, N.L., Forni, M., Bacci, M.L., Giovannoni, R., Razzini, R., Fantinati, P., Zannoni, A., Fusetti, L., Dalpra, L., Bianco, M.R., Papa, M., Seren, E., Sandrin, M.S., McKenzie, I.F. & Lavitrano, M. (2005). Multi-transgenic pigs expressing three fluorescent proteins produced with high efficiency by sperm mediated gene transfer. Mol Reprod Dev 72, 6876.Google Scholar
Wells, D.N., Misica, P.M., Day, T.A. & Tervit, H.R. (1997). Production of cloned lambs from an established embryonic cell line: A comparison between in vivo- and in vitro-matured cytoplasts. Biol Reprod 57, 385393.Google Scholar
Wen, J., Liu, J., Song, G., Liu, L., Tang, B. & Li, Z. (2010). Effects of BIO on maintaining pluripotency of porcine EG cells in combination with SCF, LIF and FGF. Reproduction 139, 10391046.Google Scholar
Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., Bernstein, B.E. & Jaenisch, R. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318324.Google Scholar
West, F.D., Terlouw, S.L., Kwon, D.J., Mumaw, J.L., Dhara, S.K., Hasneen, K., Dobrinsky, J.R. & Sticem, S.L. (2010). Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev 19, 12111220.Google Scholar
Wheeler, M.B. (1994). Development and validation of swine embryonic stem cells: A review. Reprod Fertil Dev 6, 563568.Google Scholar
Wianny, F., Perreau, C. & Hochereau de Reviers, M.T. (1997). Proliferation and differentiation of porcine inner cell mass and epiblast in vitro. Biol Reprod 57, 756764.Google Scholar
Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J. & Campbell, K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810813.Google Scholar
Woods, G.L., White, K.L., Vanderwall, D.K., Li, G.P., Aston, K.I., Bunch, T.D., Meerdo, L.N. & Pate, B.J. (2003). A mule cloned from fetal cells by nuclear transfer. Science 301, 1063.Google Scholar
Wrenzycki, C., Herrmann, D. & Niemann, H. (2007). Messenger RNA in oocytes and embryos in relation to embryo viability. Theriogenology 68(S1), 7783.Google Scholar
Wrobel, K.H. & Suss, F. (1998). Identification and temporospatial distribution of bovine primordial germ cells prior to gonadal sexual differentiation. Anat Embryol (Berl) 197, 451467.Google Scholar
Wu, D., Hamilton, B., Martin, C., Gao, Y., Ye, M. & Yao, S. (2009a). Generation of induced pluripotent stem cells by reprogramming human fibroblasts with the stemgent human TF lentivirus set. J Vis Exp 34, pii: 1553. doi: 10.3791/1553.Google Scholar
Wu, Z., Chen, J., Ren, J., Bao, L., Liao, J., Chun, C., Rao, L., Li, H., Gu, Y., Dai, H., Zhu, H., Teng, X., Cheng, L. & Xiao, L. (2009b). Generation of pig-induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1, 4654.Google Scholar
Wuensch, A., Habermann, F.A., Kurosaka, S., Klose, R., Zakhartchenko, V., Reichenbach, H.D., Sinowatz, F., McLaughlin, K.J. & Wolf, E. (2007). Quantitative monitoring of pluripotency gene activation after somatic cloning in cattle. Biol Reprod 76, 983991.Google Scholar
Xu, Y.N., Guan, N., Wang, Z.D., Shan, Z.Y., Shen, J.L., Zhang, Q.H., Jin, L.H. & Lei, L. (2009). ES cell extract-induced expression of pluripotent factors in somatic cells. Anat Rec (Hoboken) 292, 12291234.Google Scholar
Yadav, P.S., Kues, W.A., Herrmann, D., Carnwath, J.W. & Niemann, H. (2005). Bovine ICM derived cells express the Oct4 ortholog. Mol Reprod Dev 72, 182190.Google Scholar
Yang, J.R., Liao, C.H., Pang, C.Y., Huang, L.L., Lin, Y.T., Chen, Y.L., Shiue, Y.L. & Chen, L.R. (2010). Directed differentiation into neural lineages and therapeutic potential of porcine embryonic stem cells in rat Parkinson's disease model. Cell Reprogram 12, 447461.Google Scholar
Yang, W., Ge, X., Hua, J., Shen, W. & Dou, Z. (2006). Improved isolation and culture of embryonic germ cells from guanzhong dairy goat. Agr Sci China 5, 550557.Google Scholar
Ye, Z., Zhan, H., Mali, P., Dowey, S., Williams, D.M., Jang, Y.Y., Dang, C.V., Spivak, J.L., Moliterno, A.R. & Cheng, L. (2009). Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114, 54735480.Google Scholar
Yeom, Y.I., Fuhrmann, G., Ovitt, C.E., Brehm, A., Ohbo, K., Gross, M., Hubner, K. & Scholer, H.R. (1996). Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122, 881894.Google Scholar
Yoshimizu, T., Sugiyama, N., De Felice, M., Yeom, Y.I., Ohbo, K., Masuko, K., Obinata, M., Abe, K., Scholer, H.R. & Matsui, Y. (1999). Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev Growth Differ 41, 675684.Google Scholar
Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, I.I. & Thomson, J.A. (2009a). Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797801.Google Scholar
Yu, J., Vodyanik, M.A., He, P., Slukvin, I.I. & Thomson, J.A. (2006). Human embryonic stem cells reprogram myeloid precursors following cell-cell fusion. Stem Cells 24, 168176.Google Scholar
Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I. & Thomson, J.A. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 19171920.Google Scholar
Yu, Y., Mai, Q., Chen, X., Wang, L., Gao, L., Zhou, C. & Zhou, Q. (2009b). Assessment of the developmental competence of human somatic cell nuclear transfer embryos by oocyte morphology classification. Hum Reprod 24, 649657.Google Scholar
Yusa, K., Rad, R., Takeda, J. & Bradley, A. (2009). Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6, 363369.Google Scholar
Zhao, X.Y., Li, W., Lv, Z., Liu, L., Tong, M., Hai, T., Hao, J., Guo, C.L., Ma, Q.W., Wang, L., Zeng, F. & Zhou, Q. (2009). iPS cells produce viable mice through tetraploid complementation. Nature 461, 8690.Google Scholar
Zhao, X.Y., Li, W., Lv, Z., Liu, L., Tong, M., Hai, T., Hao, J., Wang, X., Wang, L., Zeng, F. & Zhou, Q. (2010). Viable fertile mice generated from fully pluripotent iPS cells derived from adult somatic cells. Stem Cell Rev 6, 390397.Google Scholar
Zhou, H.Y., Wu, S.L., Joo, J.Y., Zhu, S.Y., Han, D.W., Lin, T.X., Trauger, S., Bien, G., Yao, S., Zhu, Y., Siuzdak, G., Scholer, H.R., Duan, L.X. & Ding, S. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4, 381384.Google Scholar
Zhou, Q., Renard, J.P., Friec, G., Brochard, V., Beaujean, N., Cherifi, Y., Fraichard, A. & Cozzi, J. (2003). Generation of fertile cloned rats using controlled timing of oocyte activation. Science 302, 1179.Google Scholar
Zhou, W. & Freed, C.R. (2009). Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27, 26672674.Google Scholar
Zhu, H., Craig, J.A., Dyce, P.W., Sunnen, N. & Li, J. (2004). Embryos derived from porcine skin-derived stem cells exhibit enhanced preimplantation development. Biol Reprod 71, 18901897.Google Scholar
Zhu, S.X., Sun, Z. & Zhang, J.P. (2007). Ovine (Ovis aries) blastula from an in vitro production system and isolation of primary embryonic stem cells. Zygote 15, 3541.Google Scholar