Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T13:21:20.721Z Has data issue: false hasContentIssue false

On the Chemical Signature and Origin of Dicoppertrihydroxyformate (Cu2(OH)3HCOO) Formed on Copper Miniatures of 17th and 18th centuries

Published online by Cambridge University Press:  13 September 2016

Alfredina Veiga
Affiliation:
Laboratório HERCULES, Universidade de Évora, Palácio do Vimioso, Largo Marquês de Marialva, 8, 7000-809 Évora, Portugal Departamento de Química, Escola de Ciências e Tecnologia, Colégio Luís António Verney, Universidade de Évora, R. Romão Ramalho, 59, 7000-671 Évora, Portugal
Dora Martins Teixeira
Affiliation:
Laboratório HERCULES, Universidade de Évora, Palácio do Vimioso, Largo Marquês de Marialva, 8, 7000-809 Évora, Portugal Departamento de Química, Escola de Ciências e Tecnologia, Colégio Luís António Verney, Universidade de Évora, R. Romão Ramalho, 59, 7000-671 Évora, Portugal
António J. Candeias
Affiliation:
Laboratório HERCULES, Universidade de Évora, Palácio do Vimioso, Largo Marquês de Marialva, 8, 7000-809 Évora, Portugal Departamento de Química, Escola de Ciências e Tecnologia, Colégio Luís António Verney, Universidade de Évora, R. Romão Ramalho, 59, 7000-671 Évora, Portugal
José Mirão
Affiliation:
Laboratório HERCULES, Universidade de Évora, Palácio do Vimioso, Largo Marquês de Marialva, 8, 7000-809 Évora, Portugal Departamento de Geociências, Escola de Ciências e Tecnologia, Colégio Luís António Verney, Universidade de Évora, R. Romão Ramalho, 59, 7000-671 Évora, Portugal
Paulo Simões Rodrigues
Affiliation:
Departamento de História, Escola de Ciências Sociais, Colégio do Espírito Santo, Universidade de Évora, Largo dos Colegiais, 2, 7000-803 Évora, Portugal Centro de História de Arte e Investigação Artística (CHAIA), Universidade de Évora, Palácio do Vimioso, Largo Marquês de Marialva, 8, 7000-809 Évora, Portugal
Jorge Ginja Teixeira*
Affiliation:
Laboratório HERCULES, Universidade de Évora, Palácio do Vimioso, Largo Marquês de Marialva, 8, 7000-809 Évora, Portugal Departamento de Química, Escola de Ciências e Tecnologia, Colégio Luís António Verney, Universidade de Évora, R. Romão Ramalho, 59, 7000-671 Évora, Portugal
*
*Corresponding author.[email protected]
Get access

Abstract

A corrosion product rarely reported in the literature has been found on the copper support of three miniature paintings of the 17th and 18th centuries. This product, which has been identified as dicoppertrihydroxyformate (Cu2(OH)3HCOO), is an unusual basic copper formate found on copper artifacts. The identification and characterization of dicoppertrihydroxyformate was carried out directly over the corroded surface of the objects, using a nondestructive approach, which combines the integrated use of various microanalytical techniques. Using this approach, it was possible to obtain a set of new reference data about the natural form of Cu2(OH)3HCOO, that will enable its unambiguous identification in other similar objects. In this work, the probable causes that may have contributed to its formation are also discussed.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceto, A., Agostino, A., Boccaleri, E., Crivello, F. & Garlanda, A.C. (2010). Identification of copper carboxylates as degradation residues on an ancient manuscript. J Raman Spectrosc 41, 14341440.CrossRefGoogle Scholar
Artioli, G. (2010). Scientific Methods and Cultural Heritage. New York: Oxford University Press.Google Scholar
Baer, N.S. & Banks, P.N. (1985). Indoor air pollution: Effects on cultural and historic materials. Int J Museum Manage Curator 4, 920.Google Scholar
Bastidas, J.M., López-Delgado, A., Cano, E., Polo, J.L. & López, F.A. (2000). Copper corrosion mechanism in the presence of formic acid vapor for short exposure times. J Electrochem Soc 147, 9991005.Google Scholar
Bouchard, M.D. & Smith, C. (2003). Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim Acta A Mol Biomol Spectrosc 59, 22472266.CrossRefGoogle ScholarPubMed
Brimblecombe, P. (1990). The composition of museum atmospheres. Atmos Environ 24, 18.CrossRefGoogle Scholar
Brown, B.F., Burnett, H.C., Chase, W.T., Goodway, M., Kruger, J. & Pourbaix, M. (Eds.) (1977). Corrosion and Metal Artifacts—A Dialogue Between Archaeologists and Corrosion Scientists, Special Publication 479. Washington, DC: U.S. Department of Commerce/National Bureau of Standards, U.S. Government Printing Office.Google Scholar
Burgio, L. & Clark, R.J.H. (2001). Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim Acta A Mol Biomol Spectrosc 57, 14911521.Google Scholar
Carter, R.O. III, Poindexter, B.D. & Weber, W.H. (1991). Vibrational spectra of copper formate tetrahydrate, copper formate dihydrate and three anhydrous forms of copper formate. Vib Spectrosc 2, 125134.CrossRefGoogle Scholar
Clark, D.E. & Zoitos, B.K. (Eds.) (1992). Corrosion of Glass, Ceramics and Ceramic Superconductors: Principles, Testing, Characterization, and Applications. New Jersey, USA: William Andrew Publishing/Noyes.Google Scholar
Clarke, S.G. & Longhurst, E.E. (1961). The corrosion of metals by acid vapors from wood. J Appl Chem 11, 435443.CrossRefGoogle Scholar
Crystallography Open Database (COD) (2015). Available at http://www.crystallography.net/cod/8102525.html (retrieved January 2015).Google Scholar
Deflorian, F. & Fedel, M. (2013). Electrochemical analysis of the degradation of lead alloy organ-pipes due to acetic acid. J Cult Herit 14, 254260.CrossRefGoogle Scholar
De Laet, N., Lycke, S., Van Pevenage, J., Moens, L. & Vandenabeele, P. (2013). Investigation of pigment degradation due to acetic acid vapors: Raman spectroscopic analysis. Eur J Mineral 25, 855862.Google Scholar
Dillmann, P., Béranger, G., Piccardo, P. & Matthiesen, H. (Eds.) (2007). Corrosion of Metallic Heritage Artefacts—Investigation, Conservation and Prediction for Long-Term Behaviour, European Federation of Corrosion Publications Number 48. Cambridge: Woodhead Publishing Ltd.Google Scholar
Dillmann, P., Watkinson, D., Angelini, E. & Adriaens, A. (Eds.) (2013). Corrosion and Conservation of Cultural Heritage Metallic Artefacts. Oxford: European Federation of Corrosion Publications Number 65, Woodhead Publishing Ltd.CrossRefGoogle Scholar
Downs, R.T. & Hall-Wallace, M. (2003). The American mineralogist crystal structure database. Am Mineral 88, 247250.Google Scholar
Eggert, G. (2010). Corroding glass, corroding metals: A survey of joint metal/glass corrosion products on historic objects. Corros Eng Sci Technol 45, 414419.Google Scholar
Eggert, G., Bührer, A., Barbier, B. & Euler, H. (2010). When glass and metal corrode together, II: A Black Forest Schäppel and further occurrences of socoformacite. In Glass and Ceramics Conservation, Roemich, H. (Ed.), pp. 174180. Corning, NY: Corning Museum of Glass.Google Scholar
Eggert, G., Haseloff, S., Euler, H. & Barbier, B. (2011). When glass and metal corrode together, III: the formation of dicoppertrihydroxyformate. ICOM-CC 16th Triennial Conference, September 19–23, 2011, Lisbon (Portugal).Google Scholar
Euler, H., Barbier, B., Kirfel, A., Haseloff, S. & Eggert, G. (2009). Crystal structure of trihydroxydicopper formate, Cu2(OH)3(HCOO). Z Krist-New Cryst Struct 224, 609610.Google Scholar
Faria, D.L.A., Puglieri, T.S. & Souza, L.A.C. (2013). Metal corrosion in polychrome baroque lead sculptures: A case study. J Braz Chem Soc 24, 13451350.Google Scholar
Fernández-Navarro, J.-M. & Villegas, M.-A. (2013). What is glass?: An introduction to the physics and chemistry of silicate glasses. In Modern Methods for Analysing Archaeological and Historical Glass, vol. 1, Janssens, K. (Ed.), pp. 122. Chichester: Wiley.Google Scholar
Gibson, L.T. & Watt, C.M. (2010). Acetic and formic acids emitted from wood samples and their effect on selected materials in museum environments. Corros Sci 52, 172178.Google Scholar
Gil, H. & Leygraf, C. (2007). Initial atmospheric corrosion of copper induced by carboxylic acids. J Electrochem Soc 154, C611C617.Google Scholar
Grazulis, S., Chateigner, D., Downs, R.T., Yokochi, A.T., Quiros, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A. (2009). Crystallography Open Database—an open-access collection of crystal structures. J Appl Cryst 42, 726729.Google Scholar
Grzywacz, C.M. (2006). Monitoring for Gaseous Pollutants in Museum Environments. Los Angeles, CA: The Getty Conservation Institute.Google Scholar
Hafner, S.S. & Nagel, S. (1983). The electric field gradient at the position of copper in Cu2O and electronic charge density analysis by means of K-factors. Phys Chem Minerals 9, 1922.CrossRefGoogle Scholar
Haseloff, S. (2011). Synthese und Charakterisierung von Kupfercarboxylaten. Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften. Fakultät für Chemie, Pharmazie und Geowissenschaften der Albert-Ludwigs-Universität Freiburg im Breisgau, Deutschland, pp. 61–64.Google Scholar
Kraus, W. & Nolze, G. (1996). POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Cryst 29, 301303.Google Scholar
Lopez-Delgado, A., Cano, E., Bastidas, J.M. & Lopez, F.A. (1998). Laboratory study of the effect of acetic acid vapor on atmospheric copper corrosion. J Electrochem Soc 145, 41404147.CrossRefGoogle Scholar
Lopez-Delgado, A., Cano, E., Bastidas, J.M. & Lopez, F.A. (2001). A comparative study on copper corrosion originated by formic and acetic acid vapors. J Mater Sci 36, 52035211.Google Scholar
May, E. & Jones, M. (Eds.) (2006). Conservation Science Heritage Materials. Cambridge: Royal Society of Chemistry.Google Scholar
Mitchell, P.C.H., Holroyd, R.P., Poulston, S., Bowker, M. & Parker, S.F. (1997). Inelastic neutron scattering of model compounds for surface formats: Potassium formate, copper formate and formic acid. J Chem Soc Faraday Trans 93, 25692575.CrossRefGoogle Scholar
Nolze, G. (2002). PowderCell: A mixture between crystal structure visualizer, simulation and refinement tool. In POWDER DIFFRACTION: Proceedings of the II International School on Powder Diffraction, Gupta, S.P.S. & Chatterjee, P. (Eds.), pp. 146155. New Delhi, India: Allied Publishers Ltd.Google Scholar
Prosek, T., Taube, M., Dubois, F. & Thierry, D. (2014). Application of automated electrical resistance sensors for measurement of corrosion rate of copper, bronze and iron in model indoor atmospheres containing short-chain volatile carboxylic acids. Corros Sci 87, 376382.CrossRefGoogle Scholar
Robinet, L. & Thickett, D. (2005). Case study: Application of Raman spectroscopy to corrosion products. In Raman Spectroscopy in Archaeology and Art History, Edwards, H.G.M. & Chalmers, J.M. (Eds.), pp. 325334. Cambridge, UK: The Royal Society of Chemistry.Google Scholar
Robinson, J.C. (Ed.) (1881). Catalogue of the Special Loan Exhibition of Spanish and Portuguese Ornamental Art, South Kensington Museum. London: Chapman and Hall.Google Scholar
Rietveld, H.M. (1969). A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2, 6571.Google Scholar
Ryhl-Svendsen, M. & Glastrup, J. (2002). Acetic acid and formic acid concentrations in the museum environment measured by SPME-GC/MS. Atmos Environ 36, 39093916.Google Scholar
Scott, D.A. (2002). Copper and Bronze in Art: Corrosion, Colorants and Conservation. Los Angeles, CA: Getty Trust Publications−Getty Conservation Institute.Google Scholar
Scott, D.A., Podany, J. & Considine, B.B. (Eds.) (2007). Ancient & Historic Metals - Conservation and Scientific Research. In Proceedings of a Symposium organized by the J. Paul Getty Museum and the Getty Conservation Institute, Getty Conservation Institute, Los Angeles, November 21--23, 1991.Google Scholar
Scott, D.A., Taniguchi, Y. & Koseto, E. (2001). The verisimilitude of verdigris: A review of the copper carboxylates. Rev Conserv 2, 7391.Google Scholar
Soroka, I.L., Shchukarev, A., Jonsson, M., Tarakinac, N.V. & Korzhavyi, P.A. (2013). Cuprous hydroxide in a solid form: Does it exist? Dalton Trans 42, 95859594.Google Scholar
Stuart, B.H. (2007). Analytical Techniques in Materials Conservation. Chichester: John Wiley & Sons Ltd.Google Scholar
Švarcová, S., Čermáková, Z., Hradilová, J., Bezdička, P. & Hradil, D. (2014). Non-destructive micro-analytical differentiation of copper pigments in paint layers of works of art using laboratory-based techniques. Spectrochim Acta A Mol Biomol Spectrosc 132, 514525.CrossRefGoogle ScholarPubMed
Tétreault, J., Cano, E., Van Bommel, M., Scott, D., Dennis, M., Barthés-Labrousse, M.-G., Minel, L. & Robbiola, L. (2003). Corrosion of copper and lead by formaldehyde, formic and acetic acid vapors. Stud Conserv 48, 237250.Google Scholar
Thickett, D. & Lee, L.R. (2004). The Selection of Materials for the Storage or Display of Museum Objects. London: The British Museum.Google Scholar
Tissot, I., Tissot, M. & Guerra, M.F. (2014). Atmospheric corrosion in museum context—The case of the treasure room from the National Archaeology Museum, Lisbon. Corros Prot Mater 33, 7377.Google Scholar
Trentelman, K., Stodulski, L., Scott, D.A., Back, M., Stock, S., Strahan, D., Drews, A.R., O’neill, A., Weber, W.H., Chen, A.E. & Garrett, S.J. (2002). The characterization of a new pale blue corrosion product found on copper alloy artifacts. Stud Conserv 47, 217227.CrossRefGoogle Scholar
Veiga, A., Mirão, J., Candeias, A.J., Rodrigues, P.S., Teixeira, D.M., Muralha, V.S.F. & Teixeira, J.G. (2014). Pigment analysis of Portuguese portrait miniatures of 17th and 18th centuries by Raman microscopy and SEM-EDS. J Raman Spectrosc 45, 947957.Google Scholar
Wyckoff, R.W.G. (1963). Crystal Structures Vol. 1, 2nd Ed New York: Interscience Publishers. pp. 7–83.Google Scholar
Wong-NG, W., McMurdie, H.F., Hubbard, C.R., Mighell, A.D. (2001). JCPDS-ICDD Research Associateship (Cooperative Program with NBS/NIST). J Res Natl Inst Stand Technol 106, 10131028.Google Scholar
Young, R.A. (Ed.) (1993). The Rietveld Method (International Union of Crystallography Monographs on Crystallography, No. 5). Oxford: Oxford Science Publications.Google Scholar
Supplementary material: File

Veiga supplementary material

Figures S1-S6

Download Veiga supplementary material(File)
File 4.8 MB