Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T13:11:02.820Z Has data issue: false hasContentIssue false

Nonlinear Lock-In Infrared Microscopy: A Complementary Investigation Technique for the Analysis of Functional Electroceramic Components

Published online by Cambridge University Press:  14 May 2015

Michael Hofstätter
Affiliation:
Institut für Struktur- und Funktionskeramik, Montanuniversitaet Leoben, 8700 Leoben, Austria
Nadine Raidl
Affiliation:
Institut für Struktur- und Funktionskeramik, Montanuniversitaet Leoben, 8700 Leoben, Austria
Bernhard Sartory
Affiliation:
Materials Center Leoben Forschung GmbH, Roseggerstraße 12, 8700 Leoben, Austria
Peter Supancic*
Affiliation:
Institut für Struktur- und Funktionskeramik, Montanuniversitaet Leoben, 8700 Leoben, Austria Materials Center Leoben Forschung GmbH, Roseggerstraße 12, 8700 Leoben, Austria
*
*Corresponding author. [email protected]
Get access

Abstract

Using lock-in infrared microscopy as a tool for current detection on the micrometer scale in AC-driven specimens in combination with iterative grinding procedure allows preparation of current dominating microstructure regions on well-polished surfaces. This technique is applied successfully on varistor components based on specially doped ZnO-based varistor ceramics. This peculiar electroceramic material exhibits exceptional high nonlinear current–voltage (I-V) characteristics, described by a power law according I~Vα, caused by double Schottky barriers at the grain boundaries. As a novelty the thermographic response is used to evaluate local electrical properties, namely the nonlinearity coefficient α, on basis of higher order harmonics with respect to the basic electrical driving AC-frequency.

To correlate the observed electrical properties to the microstructure, the polar crystal orientation of the relevant ZnO grains is determined by combining electron backscatter diffraction and orientation-dependent patterns as a result of a chemical etching procedure. These findings support a modified new model for describing the grain boundary controlled current flow in a varistor microstructure including orientation-dependent barrier properties. Hence, the experimentally observed current direction-dependent behavior can be described consistently.

Type
EMAS Special Issue
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article is intended for the Special Issue from the EMAS 2014 Workshop on Electron Probe Microanalysis of Materials Today—Rare and Noble Elements: From Ore Deposits to High-Tech Materials.

References

Alim, M.A., Li, S., Liu, F. & Cheng, P. (2006). Electrical barriers in the ZnO varistor grain boundaries. Phys Status Solidi A 203, 410427.Google Scholar
Blatter, G. & Baeriswyl, D. (1987). High-field transport phenomenology hot-electron generation at semiconductor interfaces. Phys Rev B 36, 6446.Google Scholar
Blatter, G. & Greuter, F. (1986 a). Carrier transport through grain boundaries in semiconductors. Phys Rev B 33, 3952.CrossRefGoogle ScholarPubMed
Blatter, G. & Greuter, F. (1986 b). Electrical breakdown at semiconductor grain boundaries. Phys Rev B 34, 8555.CrossRefGoogle ScholarPubMed
Breitenstein, O., Langenkamp, M., Altmann, F., Katzer, D., Lindner, A. & Eggers, H. (2000). Microscopic lock-in thermography investigation of leakage sites in integrated circuits. Rev Sci Instrum 71, 4155.Google Scholar
Breitenstein, O., Warta, W. & Langenkamp, M. (2010). Lock-In Thermography: Basics and Use for Evaluating Electronic Devices and Materials. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg.Google Scholar
Busse, G., Wu, D. & Karpen, W. (1992). Thermal wave imaging with phase sensitive modulated thermography. J Appl Phys 71, 3962.Google Scholar
Clarke, D.R. (1999). Varistor ceramics. J Am Ceram Soc 82, 485502.CrossRefGoogle Scholar
Emtage, P.R. (1977). The physics of zinc oxide varistor. J Appl Phys 48, 4372.Google Scholar
Fujitsu, S., Toyoda, H. & Yanagida, H. (1987). Origin of ZnO varistor. J Am Ceram Soc 70, C-71C-72.Google Scholar
Greuter, F. (1995). Electrically active interfaces in ZnO varistors. Solid State Ionics 75, 6778.Google Scholar
Greuter, F. & Blatter, G. (1990). Electrical properties of grain boundaries in polycrystalline compound semiconductors. Semicond Sci Technol 5, 111137.CrossRefGoogle Scholar
Hofstätter, M., Nevosad, A., Teichert, C., Supancic, P. & Danzer, R. (2013). Voltage polarity dependent current paths through polycrystalline ZnO varistors. J Eur Ceram Soc 33, 34733476.CrossRefGoogle Scholar
Hofstätter, M. & Supancic, P. (2013). 3D Netzwerksimulationen von Varistoren mit verschiedenen Korngrößenverteilungen. Berg Huettenmaenn Monatsh 158, 206210.Google Scholar
Jo, W., Kim, S.J. & Kim, D.Y. (2005). Analysis of the etching behavior of ZnO ceramics. Acta Mater 53, 41854188.Google Scholar
Levinson, L.M. & Philipp, H.R. (1975). The physics of metal oxide varistors. J Appl Phys 46, 1332.Google Scholar
Li, H.H., Huang, Y.X., Li, Z.M., Yao, Y.H. & Zhang, S.Y. (2014). Preparation and infrared emissivities of alkali metal doped ZnO powders. J Cent South Univ 21, 34493455.CrossRefGoogle Scholar
Mahan, G.D. (1979). Theory of conduction in ZnO varistors. J Appl Phys 50, 27992812.CrossRefGoogle Scholar
Mariano, A.N. & Hanneman, R.E. (1963). Crystallographic polarity of ZnO crystals. J Appl Phys 34, 384.Google Scholar
Meola, C., Carlomagno, G.M. & Giorleo, L. (2004). The use of infrared thermography for materials characterization. J Mater Process Technol 155–156, 11321137.Google Scholar
Meola, C., Carlomagno, G.M., Squillace, A. & Vitiello, A. (2006). Non-destructive evaluation of aerospace materials with lock-in thermography. Eng Fail Anal 13, 380388.Google Scholar
Nevosad, A., Hofstätter, M., Supancic, P. & Teichert, C. (2014). Micro four-point probe investigation of individual ZnO grain boundaries in a varistor ceramic. J Eur Ceram Soc 34, 19631970.CrossRefGoogle Scholar
Pike, G.E. (1984). Semiconductor grain-boundary admittance theory. Phys Rev B 30, 795802.Google Scholar
Raidl, N., Supancic, P., Danzer, R. & Hofstätter, M. (2015). Piezotronically Modified Double Schottky Barriers in ZnO Varistors. Adv Mater 27, 20312035.Google Scholar
Rantala, J., Wu, D. & Busse, G. (1998). NDT of polymer materials using lock-in thermography with water-coupled ultrasonic excitation. NDT and E Int 31, 4349.Google Scholar
Sakagami, T. & Kubo, S. (2002). Applications of pulse heating thermography and lock-in thermography to quantitative nondestructive evaluations. Infrared Phys Technol 43, 211218.Google Scholar
Tanaka, A. & Mukae, K. (1999). ICTS measurements of single grain boundaries in ZnO: Rare-earth varistor. J Electroceram 4, 5559.Google Scholar
Tanaka, S. & Takahashi, K. (1999). Direct measurements of voltage–current characteristics of single grain boundary of ZnO varistors. J Eur Ceram Soc 19, 727730.Google Scholar
Verghese, P.M. & Clarke, D.R. (2000). Piezoelectric contributions to the electrical behavior of ZnO varistors. J Appl Phys 87, 44304438.Google Scholar
Zhang, Y., Liu, Y. & Wang, Z.L. (2011). Fundamental theory of piezotronics. Adv Mater 23, 30043013.Google Scholar
Zhou, J., Fei, P., Gu, Y., Mai, W., Gao, Y., Yang, R., Bao, G. & Wang, Z.L. (2008 a). Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. Nano Lett 8, 39733977.Google Scholar
Zhou, J., Gu, Y., Fei, P., Mai, W., Gao, Y., Yang, R., Bao, G. & Wang, Z.L. (2008 b). Flexible piezotronic strain sensor. Nano Lett 8, 30353040.Google Scholar