Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T00:33:24.337Z Has data issue: false hasContentIssue false

New Associated Structures of the Anterior Flagella of Giardia duodenalis

Published online by Cambridge University Press:  04 September 2013

Claudia Maia-Brigagão
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 21941-902 Instituto Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil, 21941-902
Ana Paula Rocha Gadelha
Affiliation:
Instituto Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil, 21941-902 Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil, 25250-020
Wanderley de Souza*
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 21941-902 Instituto Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil, 21941-902 Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil, 25250-020
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Giardia duodenalis is a protozoan parasite that causes intestinal disorders. The trophozoites present four pairs of flagella. Here we further analyze the structural organization of the anterior flagella associated structures of G. duodenalis. High resolution scanning electron microscopy of detergent-extracted trophozoites revealed novel aspects of the interaction of the anterior flagella axonemes with the marginal plates. Images of the marginal plates showed that it was located in the anterior region of the parasite, above the crossing point of the anterior flagella axonemes toward the periphery of the cell. Two well distinguished structures were seen associated with the anterior flagella. The first one corresponds to the “dense rods”, located just below the axoneme. The second one is a system of filaments located in the upper portion of the flagellum, facing the marginal plates and connecting these two structures. The thickness of the filaments is around 18 nm and they are spaced at intervals of 4–32 nm (average 18 nm). The length of the filaments may vary from 33 to 240 nm. We suggest that this filamentous structure of Giardia may help the dynamics and behavior of the anterior flagella of trophozoites during protozoan motility and adhesion, providing favorable conditions for the establishment of parasitism.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Campanati, L., Holloschi, A., Troster, H., Spring, H., Souza, W. & Monteiro-Leal, L.H. (2002). Video-microscopy observations of fast dynamic processes in the protozoon Giardia lamblia . Cell Motil Cytoskeleton 51, 213224.Google Scholar
Dawson, S.C. & House, S.A. (2010). Life with eight flagella: Flagellar assembly and division in Giardia . Curr Opin Microbiol 13, 480490.Google Scholar
Elmendorf, H.G., Dawson, S.C. & McCaffery, J.M. (2003). The cytoskeleton of Giardia lamblia . Int J Parasitol 33, 328.CrossRefGoogle ScholarPubMed
Friend, D.S. (1966). The fine structure of Giardia muris . J Cell Biol 29, 317332.CrossRefGoogle ScholarPubMed
Kattenbach, W.M., Diniz Junior, J.A., Benchimol, M. & de Souza, W. (1996). A deep-etch study of the cytoskeleton of Giardia duodenalis . Biol Cell 86, 161166.Google Scholar
Keister, D.B. (1983). Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77, 487488.Google Scholar
Kulda, J. & Nohynkova, E. (1995). Giardia and giardiasis. In Parasitic Protozoa, 2nd ed., vol. 10, Kreier, J.P. (Ed.), pp. 225422. San Diego, CA: Academic Press Inc. Google Scholar
Nohynkova, E., Tumova, P. & Kulda, J. (2006). Cell division of Giardia intestinalis: Flagellar developmental cycle involves transformation and exchange of flagella between mastigonts of a diplomonad cell. Eukaryot Cell 5, 753761.CrossRefGoogle ScholarPubMed
Sant'Anna, C., Campanati, L., Gadelha, C., Lourenço, D., Labati-Terra, L., Bittencourt-Silvestre, J., Benchimol, M., Cunha-e-Silva, N.L. & De Souza, W. (2005). Improvement on the visualization of cytoskeletal structures of protozoan parasites using high-resolution field emission scanning electron microscopy (FESEM). Histochem Cell Biol 124, 8795.Google Scholar
Savioli, L., Smith, H. & Thompson, A. (2006). Giardia and Cryptosporidium join the “neglected diseases initiative.” Trends Parasitol 22, 203208.Google Scholar
Schliwa, M. & van Blerkom, J. (1981). Structural interaction of cytoskeletal components. J Cell Biol 90, 222235.Google Scholar
Talke, S. & Preisfeld, A. (2002). Molecular evolution of euglenozoan paraxonemal rod genes par1 and par2 coincides with phylogenetic reconstruction based on small subunit rDNA DATA. J Phycol 38, 9951003.Google Scholar
Troeger, H., Epple, H.J., Schneider, T., Wahnschaffe, U., Ullrich, R., Burchard, G.D., Jelinek, T., Zeitz, M., Fromm, M. & Schulzke, J.D. (2007). Effect of chronic Giardia lamblia infection on epithelial transport and barrier function in human duodenum. Gut 56, 328335.Google Scholar
Tumova, P., Kulda, J. & Nohynkova, E. (2007). Cell division of Giardia intestinalis: Assembly and disassembly of the adhesive disc, and the cytokinesis. Cell Motil Cytoskeleton 64, 288298.CrossRefGoogle ScholarPubMed