Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T09:18:01.777Z Has data issue: false hasContentIssue false

Nanoscale Stoichiometric Analysis of a High-Temperature Superconductor by Atom Probe Tomography

Published online by Cambridge University Press:  31 January 2017

Stella Pedrazzini*
Affiliation:
Department of Materials, University of Oxford, Parks Road, , Oxford OX1 3PH, UK
Andrew J. London
Affiliation:
Department of Materials, University of Oxford, Parks Road, , Oxford OX1 3PH, UK
Baptiste Gault
Affiliation:
Department of Materials, University of Oxford, Parks Road, , Oxford OX1 3PH, UK Max Planck Institute für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
David Saxey
Affiliation:
Geoscience Atom Probe, Advanced Resource Characterisation Facility, John de Laeter Centre, Curtin University, Perth, WA 6102, Australia
Susannah Speller
Affiliation:
Department of Materials, University of Oxford, Parks Road, , Oxford OX1 3PH, UK
Chris R. M. Grovenor
Affiliation:
Department of Materials, University of Oxford, Parks Road, , Oxford OX1 3PH, UK
Mohsen Danaie
Affiliation:
Department of Materials, University of Oxford, Parks Road, , Oxford OX1 3PH, UK
Michael P. Moody
Affiliation:
Department of Materials, University of Oxford, Parks Road, , Oxford OX1 3PH, UK
Philip D. Edmondson
Affiliation:
Oak Ridge National Laboratory, Materials Science & Technology Division, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
Paul A. J. Bagot
Affiliation:
Department of Materials, University of Oxford, Parks Road, , Oxford OX1 3PH, UK
*
*Corresponding author. [email protected]
Get access

Abstract

The functional properties of the high-temperature superconductor Y1Ba2Cu3O7−δ (Y-123) are closely correlated to the exact stoichiometry and oxygen content. Exceeding the critical value of 1 oxygen vacancy for every five unit cells (δ>0.2, which translates to a 1.5 at% deviation from the nominal oxygen stoichiometry of Y7.7Ba15.3Cu23O54−δ) is sufficient to alter the superconducting properties. Stoichiometry at the nanometer scale, particularly of oxygen and other lighter elements, is extremely difficult to quantify in complex functional ceramics by most currently available analytical techniques. The present study is an analysis and optimization of the experimental conditions required to quantify the local nanoscale stoichiometry of single crystal yttrium barium copper oxide (YBCO) samples in three dimensions by atom probe tomography (APT). APT analysis required systematic exploration of a wide range of data acquisition and processing conditions to calibrate the measurements. Laser pulse energy, ion identification, and the choice of range widths were all found to influence composition measurements. The final composition obtained from melt-grown crystals with optimized superconducting properties was Y7.9Ba10.4Cu24.4O57.2.

Type
Materials Science (Nonmetals)
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babu, N.H., Jackson, K.P., Dennis, A.R., Shi, Y.H., Mancini, C., Cardwell, D.A. & Durrell, J.H. (2012). Growth of large size Y1Ba2Cu3O7 single crystals using the Top Seeded Melt Growth process. Supercond Sci Technol 25(7), 75012.CrossRefGoogle Scholar
Bachhav, M., Danoix, F., Hannoyer, B., Bassat, J.-M. & Danoix, R. (2013). Investigation of O-18 enriched hematite (α-Fe2 O3) by laser assisted atom probe tomography. Int J Mass Spectrom 335, 5760.CrossRefGoogle Scholar
Badwal, S.P.S., Giddey, S., Munnings, C. & Kulkarni, A. (2014). Review of progress in high temperature solid oxide fuel cells. J Aust Ceram Soc 50(1), 2337.Google Scholar
Benzi, P., Bottizzo, E. & Rizzi, N. (2004). Oxygen determination from cell dimensions in YBCO superconductors. J Cryst Growth 269(625), 24.CrossRefGoogle Scholar
Bunton, J.H., Olson, J.D., Lenz, D.R. & Kelly, T.F. (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc Microanal 13, 418–127.CrossRefGoogle ScholarPubMed
Cerezo, A., Clifton, P.H., Lozano-Perez, S., Panayi, P., Sha, G. & Smith, G.D.W. (2007). Overview: Recent progress in three-dimensional atom probe instruments and applications. Microsc Microanal 13, 408417.CrossRefGoogle ScholarPubMed
Cerezo, A., Grovenor, C.R.M., Hoyle, R.M. & Smith, G.D.W. (1988). Atom probe analysis of a ceramic oxide superconductor. Appl Phys Lett 52(12), 10201022.CrossRefGoogle Scholar
Chen, D., Bishop, S.R. & Tuller, H.L. (2013). Nonstoichiometry in oxide thin films: A chemical capacitance study of the praseodymium-cerium oxide system. Adv Funct Mater 23(17), 21682174.CrossRefGoogle Scholar
Clifton, H., Gribb, T.T., Gerstl, S.S.A., Ulfig, R.M. & Larson, D.J. (2008). Performance advantages of a modern ultra-high mass resolution atom probe. Microsc Microanal 14(Suppl), 454455.CrossRefGoogle Scholar
Deconihout, B., Vurpillot, F., Gault, B., Da Costa, G., Bouet, M., Bostel, A., Blavette, D., Hideour, A., Martel, G. & Brunel, M. (2007). Toward a laser assisted wide-angle tomographic atom-probe. Surf Interface Anal 39, 278282.CrossRefGoogle Scholar
Degardin, A.F., Galiano, X., Gensbittel, A., Dubrunfaut, O., Jagtap, V.S. & Kreisler, A.J. (2014). Amorphous Y-Ba-Cu-O oxide thin films: Structural, electrical and dielectric properties correlated with uncooled infrared pyroelectric detection performances. Thin Solid Film 533, 104108.CrossRefGoogle Scholar
Degoy, S., Jimenez, J., Martin, P., Martinez, O., Prieto, A.C., Chambonnet, D., Audry, C., Belouet, C. & Perriere, J. (1996). Oxygen content of YBaCuO thin films. Physica C 256(3), 291.CrossRefGoogle Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012). Atom Probe Microscopy.CrossRefGoogle Scholar
Gault, B., Saxey, D.W., Ashton, M.V., Sinnott, S.B., Chiaramonti, A.N., Moody, M.P. & Schreiber, D.K. (2016). Behavior of molecules and molecular ions near a field emitter. New J Phys 18, 33031.CrossRefGoogle Scholar
Graf, T., Triscone, G. & Muller, J. (1990). Variation of the superconducting and crystallographic properties and their relation to oxygen stoichiometry of highly homogeneous YBa2Cu3Ox. J Less Common Met 159 C, 349.CrossRefGoogle Scholar
Hudson, D., Smith, G.D.W. & Gault, B. (2011). Optimisation of mass ranging for atom probe microanalysis and application to the corrosion processes in Zr alloys. Ultramicroscopy 111, 480486.CrossRefGoogle Scholar
Jia, C.L., Lentzen, M. & Urban, K. (2003). Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870.CrossRefGoogle ScholarPubMed
Jorgensen, J.D., Hinks, D.G., Radaelli, P.G., Pie, S., Lightoot, P., Dabrowski, B., Segre, C.U. & Hunter, B.A. (1991). Defects, defect ordering, structural coherence and superconductivity in the 123 copper oxides. Physica C 184, 185189.Google Scholar
Kellogg, G.L. & Brenner, S.S. (1987). Field ion microscopy and imaging atom-probe mass spectroscopy of superconducting YBa2Cu3O7-x . Appl Phys Lett 51, 1851.CrossRefGoogle Scholar
Kelly, T.F. & Larson, D.J. (2000). Local electrode atom probes. Mater Charact 44, 5985.CrossRefGoogle Scholar
Kelly, T.F., Vella, A., Bunton, J.H., Houard, J., Silaeva, E.P., Bogdanowicz, J. & Vandervoorst, W. (2014). Laser pulsing of field evaporation in atom probe tomography. Curr Opin Solid State Mater Sci 18(2), 8189.CrossRefGoogle Scholar
Kim, C.J., Kim, K.-B., Hong, G.-W., Won, D.-Y., Kim, B.-H., Kim, C.-T., Moon, H.-C., & Suhr, D.-S. (1992). Microstructure, microhardness, and superconductivity of CeO2-added Y–Ba–Cu–O superconductors. J Mater Res 7, 23492354.CrossRefGoogle Scholar
Kingham, D.R. (1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surface Science 116, 273.CrossRefGoogle Scholar
Kreisler, A.J., Jagtap, V.S., Sou, G., Klisnick, G. & Degardin, A.F. (2012). Semiconducting YBaCuO films grown on silicon substrates: IR room temperature sensing and fast pyroelectric response. IOP Conf Ser Mater Sci Eng, 41(1), 12011.CrossRefGoogle Scholar
La Fontaine, A., Gault, B., Breen, A., Stephenson, L., Ceguerra, A.V., Yang, L., Nguyen, T.D., Zhang, J., Young, D.J. & Cairney, J.M. (2015). Interpreting atom probe data from chromium oxide scales. Ultramicroscopy 159(2), 354359.CrossRefGoogle ScholarPubMed
Li, Q., Amemiya, N., Takeuchi, K., Nakamura, T. & Fujiwara, N. (2011). Effects of unevenly distributed critical currents and damaged coated conductors to AC losses of superconducting power transmission cables. IEEE Trans Appl Supercond 21(3), 953956.CrossRefGoogle Scholar
Liu, F. & Tsong, T.T. (1984). Numerical calculation of the temperature evolution and profile of the field ion emitter in the pulsed-laser time-of-flight atom probe. Rev Sci Instrum 55(4), 1779.CrossRefGoogle Scholar
London, A., Lozano-Perez, S., Moody, M.P., Amirthapandian, S., Panigrahi, B.K., Sundar, C.S. & Grovenor, C.R.M. (2015). Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys. Ultramicroscopy 159(2), 360367.CrossRefGoogle ScholarPubMed
Marquis, E.A., Araullo-Peters, V., Etienne, A., Fedotova, S., Fuji, K., Fukuya, K., Kuleshova, E., Legrand, A., London, A., Lozano-Perez, S., Nagai, Y., Nishida, K., Radiguet, B., Schreiber, D., Soneda, N., Thuvander, M., Toyama, T., Sefta, F. & Chou, P. (2016). A round robin experiment : Analysis of solute clustering from atom probe tomography data. Microsc Microanal 22(Suppl 3), 666667.CrossRefGoogle Scholar
Melmed, A.J., Shull, R.D., Chiang, C.K. & Fowler, H.A. (1988). Possible evidence for superconducting layers in single crystal YBa2Cu3O7-x by field ion microscopy. Science 239(176), 4836.CrossRefGoogle ScholarPubMed
Meisenkothen, F., Steel, E. B., Prosa, T. J., Henry, K. T. & Prakash Kolli, R. (2015). Effects of detector dead-time on quantitative analyses involving boron and multi-hit detection events in atom probe tomography. Ultramicroscopy 159, 101111.CrossRefGoogle ScholarPubMed
Murakami, M., Gotoh, S., Fujimoto, H., Yamaguchi, K., Koshizuka, N. & Tanaka, S. (1991). Flux pinning and critical currents in melt processed YBaCuO superconductors. Supercond Sci Technol 4, 543550.CrossRefGoogle Scholar
Nedeltcheva, T. (1995). Determination of oxygen stoichiometry in YBCO superconductors by spectrophotometry. Anal Chim Acta 312(2), 223.CrossRefGoogle Scholar
Nedeltcheva, T. & Vladimirova, L. (2001). Spectrophotometric determination of oxygen stoichiometry in YBCO superconducting bulk samples. Anal Chim Acta 437(2), 259.CrossRefGoogle Scholar
Nishikawa, O. & Nagai, M. (1988). Ultramicroanalysis of Y-Ba-Cu-O ceramics with the atom-probe microscope. Phys Rev B 37, 3685.CrossRefGoogle ScholarPubMed
Pinol, S., Sandiumenge, F., Martinez, B., Gomis, V., Fontcuberta, J., Obradros, X., Snoek, E. & Roucau, C. (1994). Enhanced critical currents by CeO2 additions in directionally solidified YBa2Cu3O7 . Appl Phys Lett 65, 14481450.CrossRefGoogle Scholar
Saxey, D. (2011). Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111(6), 437479.CrossRefGoogle ScholarPubMed
Seh, H., Fritze, H. & Tuller, H.L. (2007). Defect chemistry of langasite III: Predictions of electrical and gravimetric properties and application to operation of high temperature crystal microbalance. J Electroceram 18(1–2), 139147.CrossRefGoogle Scholar
Suvorova, E.I., Cantoni, M., Buffat, P.A., Didyk, A.Y., Antonova, L.K., Troitskii, A.V. & Mikhailova, G.N. (2014). Structure analysis of the YBCO layer in Ag/YBCO/metal oxide buffer/Hastelloy composite tape before and after 107 MeV Kr17+ irradiation. Acta Mater 75, 7179.CrossRefGoogle Scholar
Sykes, A., Gryaznevich, M.P., Kingham, D., Costley, A.E., Hugill, J., Smith, G., Buxton, P., Ball, S., Chappell, S. & Melhem, Z. (2014). Recent advances on the spherical tokamak route to fusion power. IEEE Trans Plasma Sci 42(3), 482488.CrossRefGoogle Scholar
Takeuchi, K., Amemiya, N., Nakamura, T., Maruyama, O. & Ohkuma, T. (2011). Model for electromagnetic field analysis of superconducting power transmissioncable comprising spiraled coated conductors. Supercond Sci Technol 24(1), 85014.CrossRefGoogle Scholar
Tang, F., Gault, B., Ringer, S.P. & Cairney, J.M. (2010). Optimization of pulsed laser atom probe (PLAP) for the analysis of nanocomposite Ti-Si-N films. Ultramicroscopy 110(7), 836843.CrossRefGoogle ScholarPubMed
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107(2–3), 131139.CrossRefGoogle ScholarPubMed
Tuller, H.L. & Bishop, S.R. (2011). Point defects in oxides: Tailoring materials through defect engineering. Annu Rev Mater Res 41, 369398.CrossRefGoogle Scholar
Vilalta, N., Sandiumenge, F., Pinol, S. & Obradors, X. (1997). Precipitate size refinement by CeO2 and Y2BaCuO5 additions in directionally solidified YBa2Cu3O7 . J Mater Res 12, 1.CrossRefGoogle Scholar
Wu, K.-H., Hsieh, M.-C., Chen, S.-P., Chao, S.-C., Juang, J.-Y., Uen, T.-M., Gou, Y.-S., Tseng, T.-Y., Fu, C.-M., Chen, J.-M. & Liu, R.-G. (1998). Preparation and electronic properties of YBa2Cu3Ox films with controlled oxygen stoichiometries. Jpn J Appl Phys 37(8), 4346.Google Scholar