Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T08:10:49.699Z Has data issue: false hasContentIssue false

Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography

Published online by Cambridge University Press:  06 February 2017

Ty J. Prosa*
Affiliation:
Cameca Instruments Inc., 5500 Nobel Drive, Madison, WI 53711, USA
David J. Larson
Affiliation:
Cameca Instruments Inc., 5500 Nobel Drive, Madison, WI 53711, USA
*
*Corresponding author. [email protected]
Get access

Abstract

Approximately 30 years after the first use of focused ion beam (FIB) instruments to prepare atom probe tomography specimens, this technique has grown to be used by hundreds of researchers around the world. This past decade has seen tremendous advances in atom probe applications, enabled by the continued development of FIB-based specimen preparation methodologies. In this work, we provide a short review of the origin of the FIB method and the standard methods used today for lift-out and sharpening, using the annular milling method as applied to atom probe tomography specimens. Key steps for enabling correlative analysis with transmission electron-beam backscatter diffraction, transmission electron microscopy, and atom probe tomography are presented, and strategies for preparing specimens for modern microelectronic device structures are reviewed and discussed in detail. Examples are used for discussion of the steps for each of these methods. We conclude with examples of the challenges presented by complex topologies such as nanowires, nanoparticles, and organic materials.

Type
Invited Reviews
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, R., Bernal, R.A., Isheim, D. & Espinosa, H.D. (2011). Characterizing atomic composition and dopant distribution in wide band gap semiconductor nanowires using laser-assisted atom probe tomography. J Phys Chem C 115, 1768817694.CrossRefGoogle Scholar
Alexander, K.B., Angelini, P. & Miller, M.K. (1989). Precision ion milling of field-ion specimens. J Phys (Paris), Colloq 50, 549554.CrossRefGoogle Scholar
Arslan, I., Marquis, E.A., Homer, M., Hekmaty, M.A. & Bartelt, N.C. (2008). Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy 108, 15791585.CrossRefGoogle ScholarPubMed
Babinsky, K., De Kloe, R., Clemens, H. & Primig, S. (2014). A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction. Ultramicroscopy 144, 918.CrossRefGoogle ScholarPubMed
Babinsky, K., Knabl, W., Lorich, A., De Kloe, R., Clemens, H. & Primig, S. (2015). Grain boundary study of technically pure molybdenum by combining APT and TKD. Ultramicroscopy 159, (Pt 2), 445451.CrossRefGoogle ScholarPubMed
Birdseye, P.J., Smith, D.A. & Smith, G.D.W. (1974). Analogue investigations of electric field distribution and ion trajectories in the field ion microscope. J Phys D 7, 16421651.CrossRefGoogle Scholar
Blumtritt, H., Isheim, D., Senz, S., Seidman, D.N. & Moutanabbir, O. (2014). Preparation of nanowire specimens for laser-assisted atom probe tomography. Nanotechnology 25, 435704.CrossRefGoogle ScholarPubMed
Bran, J., Jean, M., Lardé, R., Sauvage, X., Breton, J.-M.L. & Pautrat, A. (2013). Elaboration and characterization of Cu/Co multilayered nanowires. J Korean Phys Soc 62, 17441747.CrossRefGoogle Scholar
Chen, Y., Rice, K.P., Prosa, T.J., Marquis, E.A. & Reed, R.C. (2015). Integrated APT/t-EBSD for grain boundary analysis of thermally grown oxide on a Ni-based superalloy. Microsc Microanal 21, 687688.CrossRefGoogle Scholar
Chen, Y., Rice, K.R. & Prosa, T.J. (2016). Site-specific sample preparation using correlative microscopy: APT and tEBSD. Microsc Anal Suppl May/June (S4).Google Scholar
Cojocaru-Mirédin, O., Pyuck-Pa, C., Abou-Ras, D., Schmidt, S.S., Caballero, R. & Raabe, D. (2011). Characterization of grain boundaries in Cu(In,Ga)Se films using atom-probe tomography. IEEE J Photovolt 1, 207212.CrossRefGoogle Scholar
Diercks, D.R., Gorman, B.P. & Mulders, J.J.L. (in submission). Electron beam induced deposition for atom probe tomography specimen capping layers. Microsc Microanal. doi:10.1017/S1431927616011740.CrossRefGoogle Scholar
Diercks, D.R., Tong, J., Zhu, H., Kee, R., Baure, G., Nino, J.C., O’Hayre, R. & Gorman, B.P. (2016). Three-dimensional quantification of composition and electrostatic potential at individual grain boundaries in doped ceria. J Mater Chem A 4, 51675175.CrossRefGoogle Scholar
Eaton, H.C. & Bayuzick, R.J. (1978). Field-induced stresses in field emitters. Surf Sci 70, 408426.CrossRefGoogle Scholar
Eichfeld, C.M., Gerstl, S.S.A., Prosa, T., Ke, Y., Redwing, J.M. & Mohney, S.E. (2012). Local electrode atom probe analysis of silicon nanowires grown with an aluminum catalyst. Nanotechnology 23, 215205.CrossRefGoogle ScholarPubMed
El Kousseifi, M., Panciera, F., Hoummada, K., Descoins, M., Baron, T. & Mangelinck, D. (2014). Ni silicide nanowires analysis by atom probe tomography. Microelectron Eng 120, 4751.CrossRefGoogle Scholar
Estivill, R., Audoit, G., Barnes, J.-P., Grenier, A. & Blavette, D. (2016). Preparation and analysis of atom probe tips by xenon focused ion beam milling. Microsc Microanal 22, 576582.CrossRefGoogle ScholarPubMed
Felfer, P., Alam, T., Ringer, S.P. & Cairney, J.M. (2012). A reproducible method for damage-free site-specific preparation of atom probe tips from interfaces. Microsc Res Tech 75, 484491.CrossRefGoogle ScholarPubMed
Felfer, P., Benndorf, P., Masters, A., Maschmeyer, T. & Cairney, J.M. (2014). Revealing the distribution of the atoms within individual bimetallic catalyst nanoparticles. Angew Chem Int Ed Engl 53, 1119011193.CrossRefGoogle ScholarPubMed
Felfer, P. & Cairney, J. (2011a). New equipment for correlative FIB/TEM/atom probe and site-specific preparation using STEM live imaging. Microsc Microanal 17(S2), 756757.CrossRefGoogle Scholar
Felfer, P., Li, T., Eder, K., Galinski, H., Magyar, A.P., Bell, D.C., Smith, G.D.W., Kruse, N., Ringer, S.P. & Cairney, J.M. (2015). New approaches to nanoparticle sample fabrication for atom probe tomography. Ultramicroscopy 159(Pt 2), 413419.CrossRefGoogle ScholarPubMed
Felfer, P., Ringer, S.P. & Cairney, J.M. (2011b). Shaping the lens of the atom probe: Fabrication of site specific, oriented specimens and application to grain boundary analysis. Ultramicroscopy 111, 435439.CrossRefGoogle ScholarPubMed
Folcke, E., Larde, R., Le Breton, J.M., Gruber, M., Vurpillot, F., Shield, J.E., Rui, X. & Patterson, M.M. (2012). Laser-assisted atom probe tomography investigation of magnetic FePt nanoclusters: First experiments. J Alloy Compd 517, 4044.CrossRefGoogle Scholar
Gault, B., Moody, M. P., Cairney, J.M. & Ringer, S.P. (2012). Atom Probe Microscopy. New York: Springer.CrossRefGoogle Scholar
Giannuzzi, L.A., Drown, J.I., Brown, S.R., Irwin, R.B. & Stevie, F.A. (1997). Focused ion beam milling and micromanipulation lift-out for site specific cross-section TEM specimen preparation. Mater Res Soc Symp Proc 480, 1927.CrossRefGoogle Scholar
Gilbert, M., Vandervorst, W., Koelling, S. & Kambham, A.K. (2011). Atom probe analysis of a 3D finFET with high-k metal gate. Ultramicroscopy 111, 530534.CrossRefGoogle ScholarPubMed
Gordon, L.M., Cohen, M.J. & Joester, D. (2013). Towards atom probe tomography of hybrid organic-inorganic nanoparticles. Microsc Microanal 19(S2), 952953.CrossRefGoogle Scholar
Gorman, B.P., Diercks, D., Salmon, N., Stach, E., Amador, G. & Hartfield, C. (2008). Hardware and techniques for cross-correlative TEM and atom probe analysis. Microsc Today 16, 4247.CrossRefGoogle Scholar
Greene, M.E., Kelly, T.F., Larson, D.J. & Prosa, T.J. (2012). Focused ion beam fabrication of solidified ferritin into nanoscale volumes for compositional analysis using atom probe tomography. J Microsc 247, 288299.CrossRefGoogle ScholarPubMed
Grenier, A., Duguay, S., Barnes, J.P., Serra, R., Rolland, N., Audoit, G., Morin, P., Gouraud, P., Cooper, D., Blavette, D. & Vurpillot, F. (2015). Three dimensional imaging and analysis of a single nano-device at the ultimate scale using correlative microscopy techniques. Appl Phys Lett 106, 213102.CrossRefGoogle Scholar
Haley, D., Petersen, T., Ringer, S.P. & Smith, G.D.W. (2011). Atom probe trajectory mapping using experimental tip shape measurements. J Microsc 244, 170180.CrossRefGoogle ScholarPubMed
Hartshorne, M.I., Isheim, D., Seidman, D.N. & Taheri, M.L. (2014). Specimen preparation for correlating transmission electron microscopy and atom probe tomography of mesoscale features. Ultramicroscopy 147, 2532.CrossRefGoogle ScholarPubMed
Heck, P.R., Pellin, M.J., Davis, A.M., Martin, I., Renaud, L., Benbalagh, R., Isheim, D., Seidman, D.N., Hiller, J., Stephan, T., Lewis, R.S., Savina, M.R., Mane, A., Elam, J., Stadermann, F.J., Zhao, X., Daulton, T.L. & Amara, S. (2010). Atom-probe tomographic analyses of presolar silicon carbide grains and meteoric nanodiamonds – first results on silicon carbide. In 41st Lunar and Planetary Science Conference, The Woodlands, Texas. Submission 2112.Google Scholar
Heck, P.R., Stadermann, F.J., Isheim, D., Auciello, O., Daulton, T.L., Davis, A.M., Elam, J.W., Floss, C., Hiller, J., Larson, D.J., Lewis, J.B., Mane, A., Pellin, M.J., Savina, M.R., Seidman, D. N. & Stephan, T. (2014). Atom-probe analyses of nanodiamonds from Allende. Meteorit Planet Sci 49, 453467.CrossRefGoogle Scholar
Henjered, A. & Norden, H. (1983). A controlled specimen preparation technique for interface studies with atom-probe field-ion microscopy. J Phys E 16, 617619.CrossRefGoogle Scholar
Herbig, M., Choi, P. & Raabe, D. (2015). Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography. Ultramicroscopy 153, 3239.CrossRefGoogle ScholarPubMed
Herbig, M., Raabe, D., Li, Y.J., Choi, P, Zaefferer, S. & Goto, S. (2014). Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett 112, 126103.CrossRefGoogle ScholarPubMed
Isheim, D., Kaszpurenko, J., Yu, D., Mao, Z., Seidman, D.N. & Arslan, I. (2012). 3-D atomic-scale mapping of manganese dopants in lead sulfide nanowires. J Phys Chem C 116, 65956600.CrossRefGoogle Scholar
Kambham, A.K., Mody, J., Gilbert, M., Koelling, S. & Vandervorst, W. (2011). Atom-probe for FinFET dopant characterization. Ultramicroscopy 111, 535539.CrossRefGoogle ScholarPubMed
Keller, R.R. & Geiss, R.H. (2012). Transmission EBSD from 10 nm domains in a scanning electron microscope. J Microsc 245, 245251.CrossRefGoogle Scholar
Kubota, M., Takamizawa, H., Shimizu, Y., Nozawa, Y., Ebisawa, N., Toyama, T., Ishida, Y., Yanagiuchi, K., Inoue, K. & Nagai, Y. (2015). Elemental distribution in multilayer systems by laser-assisted atom probe tomography with various analysis directions. Microsc Microanal 21, 13731378.CrossRefGoogle ScholarPubMed
Larson, D.J., Foord, D.T., Petford-Long, A.K., Anthony, T.C., Rozdilsky, I.M., Cerezo, A. & Smith, G.D.W. (1998b). Focused ion-beam milling for field-ion specimen preparation: preliminary investigations. Ultramicroscopy 75, 147159.CrossRefGoogle Scholar
Larson, D.J., Foord, D.T., Petford-Long, A.K., Liew, H., Blamire, M.G., Cerezo, A. & Smith, G.D.W. (1999). Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79, 287293.CrossRefGoogle Scholar
Larson, D.J., Gault, B., Geiser, B.P., De Geuser, F. & Vurpillot, F. (2013a). Atom probe tomography spatial reconstruction: Status and directions. Curr Opin Solid State Mater Sci 17, 236247.CrossRefGoogle Scholar
Larson, D.J., Giddings, A.D., Wu, Y., Verheijen, M.A., Prosa, T.J., Roozeboom, F., Rice, K.P., Kessels, W.M.M., Geiser, B.P. & Kelly, T.F. (2015). Encapsulation method for atom probe tomography analysis of nanoparticles. Ultramicroscopy 159, 420426.CrossRefGoogle ScholarPubMed
Larson, D.J., Lawrence, D., Olson, D., Prosa, T.J., Ulfig, R.M., Reinhard, D.A., Clifton, P.C., Kelly, T.F. & Lefebvre, W. (2011a). From the store shelf to device-level atom probe analysis: An exercise in feasibility. In 36th International Symposium for Testing and Failure Analysis, ASM International, San Jose, California, pp. 189–197.CrossRefGoogle Scholar
Larson, D.J., Marquis, E.A., Rice, P.M., Prosa, T.J., Geiser, B.P., Yang, S.-H. & Parkin, S.S.P. (2011b). Manganese diffusion in annealed magnetic tunnel junctions with MgO tunnel barriers. Scripta Mater 64, 673676.CrossRefGoogle Scholar
Larson, D.J., Miller, M.K., Ulfig, R.M., Matyi, R.J., Camus, P.P. & Kelly, T.F. (1998b). Field ion specimen preparation from near-surface regions. Ultramicroscopy 73, 273278.CrossRefGoogle Scholar
Larson, D.J., Prosa, T.J., Bunton, J.H., Olson, D.P., Lawrence, D.F., Oltman, E., Strennen, S.N. & Kelly, T.F. (2013b). Improved mass resolving power and yield in atom probe tomography. Microsc Microanal 19(S2), 994995.CrossRefGoogle Scholar
Larson, D.J., Prosa, T.J., Geiser, B.P. & Egelhoff, W.F. Jr. (2011c). Effect of analysis direction on the measurement of interfacial mixing in thin metal layers with atom probe tomography. Ultramicroscopy 111, 506511.CrossRefGoogle ScholarPubMed
Larson, D.J., Prosa, T.J., Lawrence, D., Geiser, B.P., Jones, C.M. & Kelly, T.F. (2011d). Atom probe tomography for microelectronics. In Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization, vol. 2, Haight, R., Ross, F. & Hannon, J. (Eds.), pp. 407–477. London: World Scientific Publishing.CrossRefGoogle Scholar
Larson, D.J., Prosa, T.J., Perea, D.E., Inoue, K. & Mangelinck, D. (2016). Atom probe tomography of nanoscale electronic materials. MRS Bull 41, 3034.CrossRefGoogle Scholar
Larson, D.J., Prosa, T.J., Ulfig, R.M., Geiser, B.P. & Kelly, T.F. (2013c). Local Electrode Atom Probe Tomography: A User’s Guide. New York: Springer.CrossRefGoogle Scholar
Lawrence, D., Alvis, R. & Olson, D. (2008). Specimen preparation for cross-section atom probe analysis. Microsc Microanal 14(S2), 10041005.CrossRefGoogle Scholar
Lawrence, D.F., Olson, D.P., Larson, D.J. & Francois-Saint-Cyr, F. (2015). FIB-SEM sample preparation for atom probe tomography. In FIB SEM User Group Meeting, Laurel, MD.Google Scholar
Lawrence, D.F., Ulfig, R.M., Olson, D.P., Reinhard, D.A., Martin, I., Strennen, S.N. & Clifton, P.H. (2014). Routine device-level atom probe analysis. In Proceedings of the 40th International Symposium for Testing and Failure Analysis, Houston, Texas, 19–22.CrossRefGoogle Scholar
Lefebvre, W., Hernandez-Maldonado, D., Moyon, F., Cuvilly, F., Vaudolon, C., Shinde, D. & Vurpillot, F. (2015). HAADF–STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy. Ultramicroscopy 159, 403412.CrossRefGoogle ScholarPubMed
Martin, A.J., Weng, W., Zhu, Z., Loesing, R., Shaffer, J. & Katnani, A. (2016). Cross-sectional atom probe tomography sample preparation for improved analysis of fins on SOI. Ultramicroscopy 161, 105109.CrossRefGoogle Scholar
Melmed, A.J. (1991). The art and science and other aspects of making sharp tips. J Vac Sci Technol B9, 601609.CrossRefGoogle Scholar
Melmed, A.J. (1996). Recollections of Erwin Muller’s Laboratory: The development of FIM (1951-1956). Appl Surf Sci 94/95, 1725.CrossRefGoogle Scholar
Miller, M.K. & Forbes, R.G. (2014). Atom-Probe Tomography: The Local Electrode Atom Probe, 1st ed. New York: Springer.CrossRefGoogle Scholar
Miller, M.K., Russell, K.F. & Thompson, G.B. (2005). Strategies for fabricating atom probe specimens with a dual beam FIB. Ultramicroscopy 102, 287298.CrossRefGoogle ScholarPubMed
Miller, M.K., Russell, K.F., Thompson, K., Alvis, R. & Larson, D.J. (2007). Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13, 428436.CrossRefGoogle ScholarPubMed
Moody, M.P., Vella, A., Gerstl, S.S.A. & Bagot, P.A.J. (2016). Advances in atom probe tomography instrumentation: Implications for materials research. MRS Bull 41, 4045.CrossRefGoogle Scholar
Moore, J., Jones, K.S., Kennel, H. & Corcoran, S. (2008). 3-D analysis of semiconductor dopant distributions in a patterned structure using LEAP. Ultramicroscopy 108, 536539.CrossRefGoogle Scholar
Nastasi, M., Mayer, J.W. & Hirvonen, J.K. (1996). Ion-Solid Interactions: Fundamentals and Applications. New York: Oxford University Press.CrossRefGoogle Scholar
Overwijk, M.H.F., van den Heuvel, F.C. & Bulle-Lieuwma, C.W.T (1993). Novel scheme for the preparation of transmission electron-microscopy specimens with a focused ion-beam. J Vac Sci Technol B 11, 2021.CrossRefGoogle Scholar
Padalkar, S., Riley, J.R., Li, Q., Wang, G.T. & Lauhon, L.J. (2014). Lift-out procedures for atom probe tomography targeting nanoscale features in core-shell nanowire heterostructures. Phys Status Solidi C 11, 656661.CrossRefGoogle Scholar
Panitz, J.A., McLane, S.B. & Muller, E.W. (1969). Calibration of the atom probe FIM. Rev Sci Instrum 40, 13211324.CrossRefGoogle Scholar
Perea, D.E., Liu, J., Bartrand, J., Dicken, Q., Thevuthasan, S.T., Browning, N.D. & Evans, J.E. (2016). Atom probe tomographic mapping directly reveals the atomic distribution of phosphorus in resin embedded ferritin. Sci Rep 6, 22321.CrossRefGoogle ScholarPubMed
Perea, D.E., Wijaya, E., Lensch-Falk, J.L., Hemesath, E.R. & Lauhon, L.J. (2008). Tomographic analysis of dilute impurities in semiconductor nanostructures. J Solid State Chem 181, 16451652.CrossRefGoogle Scholar
Prosa, T.J., Alvis, R., Tsakalakos, L. & Smentkowski, V.S. (2010). Characterization of dilute species within CVD-grown silicon nanowires doped using trimethylboron: Protected lift-out specimen preparation for atom probe tomography. J Microsc 239, 9298.CrossRefGoogle ScholarPubMed
Prosa, T.J., Clifton, P.H., Zhong, H., Tyagi, A., Shivaraman, R., DenBaars, S.P., Nakamura, S. & Speck, J.S. (2011). Atom probe analysis of interfacial abruptness and clustering within a single In(x)Ga(1-x)N quantum well device on semipolar (10(1)over-bar(1)over-bar) GaN substrate. Appl Phys Lett 98, 191903191905.CrossRefGoogle Scholar
Prosa, T.J., Geiser, B.P., Lawrence, D., Olson, D. & Larson, D.J. (2014). Developing detection efficiency standards for atom probe tomography. Proc SPIE 9173, 917307.Google Scholar
Prosa, T.J., Lawrence, D., Olson, D., Larson, D.J. & Marquis, E.A. (2009). Backside lift-out specimen preparation: Reversing the analysis direction in atom probe tomography. Microsc Microanal 15(S2), 298299.CrossRefGoogle Scholar
Qu, J., Wong, D., Du, S., Yang, L., Ringer, S. & Zheng, R. (2015). Methodology exploration of specimen preparation for atom probe tomography from nanowires. Ultramicroscopy 159(Pt 2), 427431.CrossRefGoogle ScholarPubMed
Rice, K.P., Chen, Y., Prosa, T.J. & Larson, D.J. (2016). Implementing transmission electron backscatter diffraction for atom probe tomography. Microsc Microanal 22, 583588.CrossRefGoogle ScholarPubMed
Rice, K.P., Chen, Y., Prosa, T.J., Larson, D.J., Nowell, M. & Stoykovich, M.P. (2015). Techniques for transmission EBSD mapping of atom probe specimens. Microsc Microanal 21(S3), 16771678.CrossRefGoogle Scholar
Rice, K.P., Keller, R.R. & Stoykovich, M.P. (2014). Specimen-thickness effects on transmission Kikuchi patterns in the scanning electron microscope. J Microsc 254, 129136.CrossRefGoogle ScholarPubMed
Riley, J.R., Padalkar, S., Li, Q., Lu, P., Koleske, D.D., Wierer, J.J., Wang, G.T. & Lauhon, L.J. (2013). Three-dimensional mapping of quantum wells in a GaN/InGaN core–shell nanowire light-emitting diode array. Nano Lett 13, 43174325.CrossRefGoogle Scholar
Sanford, N.A., Blanchard, P.T., Brubaker, M., Bertness, K.A., Roshko, A., Schlager, J.B., Kirchhofer, R., Diercks, D.R. & Gorman, B. (2014). Laser-assisted atom probe tomography of MBE grown GaN nanowire heterostructures. Phys Status Solidi C 11, 608612.CrossRefGoogle Scholar
Seto, K., Larson, D.J., Warren, P.J. & Smith, G.D.W. (1999). Studies of grain boundaries of B-doped interstitial-free steels on the atomic scale by three-dimensional atom probe. Scipta Mater 40, 1029.CrossRefGoogle Scholar
Shimizu, Y., Kawamura, Y., Uematsu, M., Tomita, M., Kinno, T., Okada, N., Kato, M., Uchida, H., Takahashi, M., Ito, H., Ishikawa, H., Ohji, Y., Takamizawa, H., Nagai, Y. & Itoh, K.M. (2011). Depth and lateral resolution of laser-assisted atom probe microscopy of silicon revealed by isotopic heterostructures. J Appl Phys 109, 36102.CrossRefGoogle Scholar
Smith, G.D.W. (2016). Private communication.Google Scholar
Stadermann, F.J., Isheim, D., Zhao, X., Daulton, T.L., Floss, C., Seidman, D.N., Heck, P.R., Pellin, M.J., Savina, M.R., Hiller, J., Mane, A., Elam, J., Davis, A.M., Stephan, T. & Amari, S. (2011). Atom-probe tomographic characterization of meteoritic nanodiamonds and presolar SiC. In 42nd Lunar and Planetary Science Conference, The Woodlands, Texas. Submission 1595.Google Scholar
Taheri, M.L., Sebastian, J.T., Reed, B.W., Seidman, D.N. & Rollett, A.D. (2010). Site-specific atomic scale analysis of solute segregation to a coincidence site lattice grain boundary. Ultramicroscopy 110, 278284.CrossRefGoogle ScholarPubMed
Takahashi, J., Kawakami, K. & Kobayashi, Y. (2014). In situ determination of misorientation angle of grain boundary by field ion microscopy analysis. Ultramicroscopy 140, 2025.CrossRefGoogle ScholarPubMed
Takamizawa, H., Shimizu, Y., Nozawa, Y., Toyama, T., Morita, H., Yabuuchi, Y., Ogura, M. & Nagai, Y. (2012). Dopant characterization in self-regulatory plasma doped fin field-effect transistors by atom probe tomography. Appl Phys Lett 100, 93502.CrossRefGoogle Scholar
Thompson, G.B., Genc, A., Morris, R., Torres, K.L. & Fraser, H.L. (2009). Correlation between TEM imaging and microanalysis for atom probe reconstruction verification. Microsc Microanal 15(S2), 250251.CrossRefGoogle Scholar
Thompson, K., Gorman, B.P., Larson, D.J., van Leer, B. & Hong, L. (2006). Minimization of Ga induced FIB damage using low energy clean-up. Microsc Microanal 12, 1736CD.CrossRefGoogle Scholar
Thompson, K., Larson, D.J. & Ulfig, R. (2005). Pre-sharpened and flat-top microtip coupons: A quantitative comparison for atom-probe analysis studies. Microsc Microanal 11(S2), 882.CrossRefGoogle Scholar
Thompson, K., Lawrence, D.J., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In-situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.CrossRefGoogle ScholarPubMed
Trimby, P.W. (2012). Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. Ultramicroscopy 120, 1624.CrossRefGoogle ScholarPubMed
Vasile, M.J., Grigg, D., Griffith, J.E., Fitzgerald, E. & Russell, P.E. (1991). Scanning probe tip geometry optimized for metrology by focused ion beam ion milling. J Vac Sci Technol 9, 35693572.CrossRefGoogle Scholar
Vurpillot, F., Larson, D. & Cerezo, A. (2004). Improvement of multilayer analyses with a three-dimensional atom probe. Surf Interface Anal 36, 552558.CrossRefGoogle Scholar
Waugh, A.R., Bayly, A.R. & Anderson, K. (1984a). The application of liquid metal ion sources to SIMS. Vacuum 34, 103.CrossRefGoogle Scholar
Waugh, A.R., Payne, S., Worrall, G.M. & Smith, G.D.W. (1984b). In situ ion milling of field ion specimens using a liquid metal ion source. J Phys 45, 207209.Google Scholar
Xiong, X. & Weyland, M. (2014). Microstructural characterization of an Al-Li-Mg-Cu alloy by correlative electron tomography and atom probe tomography. Microsc Microanal 20, 10221028.CrossRefGoogle ScholarPubMed
Xu, T., Nys, J.P., Grandidier, B., Stiévenard, D., Coffinier, Y., Boukherroub, R., Larde, R., Cadel, E. & Pareige, P. (2008). Growth of Si nanowires on micropillars for the study of their dopant distribution by atom probe tomography. J Vac Sci Technol B 26, 19601963.CrossRefGoogle Scholar
Yao, L. & Miller, M.K. (2013). Direct experimental measurement of Grain boundary’s five-parameters and solute segregations at atomic level. Microsc Microanal 19(S2), 938939.CrossRefGoogle Scholar