Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T07:27:36.904Z Has data issue: false hasContentIssue false

Microstructural Characterization of Thin Films TiO2 Deposited Inside a Tubing by Spray Pyrolysis

Published online by Cambridge University Press:  02 July 2020

M. Miki-Yoshida
Affiliation:
División de Física y Química de Materiales, Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Chihuahua, Chih., CP , 31109, México.
F. Paraguay D
Affiliation:
División de Física y Química de Materiales, Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Chihuahua, Chih., CP , 31109, México.
W. Antunez
Affiliation:
División de Física y Química de Materiales, Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Chihuahua, Chih., CP , 31109, México.
Get access

Abstract

The traditional application of titanium dioxide was as a white pigment; later, it was discovered their photocatalytic properties as an anode for the photo-oxidation of water. Furthermore, titanium dioxide films are now widely used in catalysis and photocatalysis because of low cost and other advantageous properties. For example, they have been used for decomposition of organic contaminants in air and water. Moreover, recent studies have reported bactericidal and detoxification effects of TiO2 thin films . It has been shown that TiO2- coated materials possess deodorizing, antibacterial, and self-cleaning functions under weak ultraviolet light. Titanium dioxide films can be prepared by many deposition techniques. One of them is the spray pyrolysis (SP) technique which is a low cost, simple to manipulate, and applicable to large-scale areas (final). Photocatalytic TiO2-covered tubing can be used to decompose organic contaminants and/or to sterilize microbial cells in air or water flows , using solar panel reactors or indoor panels irradiated with UV radiation.

Type
Novel Microscopy Assisted Ceramic Developments in Materials Scienceand Nanotechnology (Organized by P. Gai and J. Lee)
Copyright
Copyright © Microscopy Society of America 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Fujishima, A., Honda, K., Nature 238 (1972) 37.CrossRefGoogle Scholar
[2]Paz, Y., Heller, A.; J. Mater. Res. 12 (1997) 2759 and references therein.CrossRefGoogle Scholar
[3]Jean-Marie, Herrmann, Catalysis Today 53 (1), (1999) 115.Google Scholar
[4]Sunada, K., Kikuchi, Y., Hashimoto, K., Fujishima, A., Environ. Sci. Technol. 32 (5), (1998) 726.CrossRefGoogle Scholar
[5]Jacoby, W. A., Ching Maness, P., Wolfrum, E. J., Blake, D. M., Fennell, J. A., Environ. Sci. Technol. 32 (17), (1998) 2650.CrossRefGoogle Scholar
[6]Natarajan, C., Fukunaga, N., Nogami, G., Thin Solid Films, 322 (1998) 6.CrossRefGoogle Scholar
[7]Badawy, W. A., J. Mater. Sci., 32 (1997) 4979CrossRefGoogle Scholar
[8]Sunada, K., Kikuchi, Y., Hashimoto, K., Fujishima, A., Environ. Sci. Technol. 32 (5), (1998) 726.CrossRefGoogle Scholar
[9]Jacoby, W. A., Ching Maness, P., Wolfrum, E. J., Blake, D. M., Fennell, J. A., Environ. Sci. Technol. 32 (17), (1998)2650.CrossRefGoogle Scholar
[10]Patil, Pramod S., Mater. Chem. Phys. 59 (1999) 185.CrossRefGoogle Scholar
[11] Joint Committee on Powder Diffraction Standards, Powder Diffraction File, International Center for Diffraction Data, Swarthmore, PA, 1996, card 211272.Google Scholar