Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T00:08:52.811Z Has data issue: false hasContentIssue false

Microscopy and Microanalysis of an Extreme Case of Salt and Biodegradation in 17th Century Wall Paintings

Published online by Cambridge University Press:  07 July 2015

Milene Gil*
Affiliation:
Laboratório HERCULES, Universidade de Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal Departamento de Quimica e Escola da Ciência e Tecnologia, Universidade de Évora, Rua Romão ramalho 59, 7000-671 Évora, Portugal Centro de Física Atómica, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
Maria Rosário Martins
Affiliation:
Laboratório HERCULES, Universidade de Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal Departamento de Quimica e Escola da Ciência e Tecnologia, Universidade de Évora, Rua Romão ramalho 59, 7000-671 Évora, Portugal ICCAM-Instituto de Ciências Agrárias e Mediterrânicas, Universidade de Évora, Apartado 94, 6006-554 Évora, Portugal
Maria Luisa Carvalho
Affiliation:
Centro de Física Atómica, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
Cátia Souto
Affiliation:
Laboratório HERCULES, Universidade de Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal
Stephane Longelin
Affiliation:
Centro de Física Atómica, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
Ana Cardoso
Affiliation:
Laboratório HERCULES, Universidade de Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal
José Mirão
Affiliation:
Laboratório HERCULES, Universidade de Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal Évora Geophysics Centre and Geosciences Department, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
António Estevão Candeias
Affiliation:
Laboratório HERCULES, Universidade de Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal Departamento de Quimica e Escola da Ciência e Tecnologia, Universidade de Évora, Rua Romão ramalho 59, 7000-671 Évora, Portugal
*
*Corresponding author. [email protected]
Get access

Abstract

The present study characterizes the main deterioration mechanisms affecting the early 17th frescoes of Casa de Fresco, the only known example in Portugal of a semi-underground leisure room richly decorated with a balcony over a water well. Frescoes from the vault are at risk due to salt weathering and biodeterioration. The aim of the research was identification of the deterioration materials, determination of their origin, and their effect on the frescoes before future intervention. Scanning electron microscopy with an energy-dispersive X-ray detector (SEM-EDS) was used to determine salt morphology and microanalysis. The mineralogical characterization was performed by X-ray powder diffraction, complemented with µ-Raman and µ-Fourier transform infrared spectroscopy. Biological assessment was evaluated with optical microscopy and SEM-EDS. Bacterial and fungal isolation and identification were performed using standard culture media and methods according to Bergey’s Manual of Systematic Bacteriology and from the Compendium of Soil Fungi. The results show that Ca and Ca-Mg carbonates from the paint renderings are the predominant salt species affecting the site. Bacterial strains from the genera Bacillus and Pseudomonas and fungal strains from the Cladosporium spp. and Penicillium spp. were isolated in the salt formations, within and between the mortar layers. Azurite, malachite, and smalt paint layers are the most affected by the weathering conditions.

Type
Materials Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, F.A. & Brecevic, L.J. (1991). Infrared of amorphous and crystalline calcium carbonate. Acta Chem Scand 45, 10181024.Google Scholar
Barletta, R.E., Bowerman, B.S., Davis, R.E. & Shea, C.E. (1986). Biodegradation testing of bitumen, BNL-NUREG38999. Available at http://www.osti.gov/bridge/servlets/purl/6825903-VfRXF5/6825903.pdf (retrieved October 29, 2012).Google Scholar
Boone, D.R., Castenholz, R.W. & Garrity, G.M. (Eds.) (2001). The Archaea and the Deeply Branching and Phototrophic Bacteria. In Bergey’s Manual of Systematic Bacteriology , 2nd ed. New York, NY: Springer Verlarg.Google Scholar
Borreli, E. (1999). Salts, ARC Laboratory Handbook. Rome: ICCROM.Google Scholar
Bouchard, M. & Smith, D.C. (2005). Database of 74 Raman spectra of standard minerals of relevance to metal corrosion, stained glass and prehistoric rock art. In Raman Spectroscopy in Archeology and Art History, pp. 429466. New York, NY: Springer Verlarg.Google Scholar
Camiña, F., Trasar-Cepeda, C., Gil-Sotres, F. & Leirós, C. (1998). Measurement of dehydrogenase activity in acid soils rich in organic matter. Soil Biol Biochem 30(8/9), 10051011.Google Scholar
Dandeu, A., Humbert, B., Carteret, C., Muher, H., Plasari, E. & Bossoutrot, J.M. (2006). Raman spectroscopy—A powerful tool for the quantitative determination of the composition of polymorph mixtures: Application to CaCO3 polymorphs mixtures. Chem Eng Technol 2(29), 221225.CrossRefGoogle Scholar
Daniilia, S. & Minopolou, E. (2009). A study of smalt and red lead discolouration in Antiphonitis wall paintings in Cyprus. Applied Phys A 96, 70017711.Google Scholar
Derrick, M.R., Stulik, D. & Landry, J.M. (1999). Infrared Spectroscopy in Conservation Science. Los Angeles, CA: Getty Institute.Google Scholar
Domsch, K.H., Gams, W. & Anderson, T.H. (1990). Compedium of Soil Fungi. London: Academic Press.Google Scholar
Durán, J.J., Lopéz-Martinez, J., Martin de Vidales, J.L., Casas, J. & Barea, J. (2001). Moonmilk: A singular endokarstic deposit. Presence in Spanish caves. Geogaceta 29, 4346.Google Scholar
Garg, K.L., Jain, K.K. & Mishra, A.K. (1995). Role of fungi in the deterioration of wall paintings. Sci Total Environ 167, 255271.Google Scholar
Gil, M., Serrão, V., Silva, A., Mirão, J., Valadas, S., Martins, R. & Candeias, A. (2011). A Casa de Fresco dos Sanches de Baena—Elementos de estudo para o seu conhecimento. Callipole 19, 253266. (in Portuguese).Google Scholar
Giovanoli, R. & Muhlethaler, B. (1970). Investigation of discolored smalt. Stud Conserv 15(1), 3744.Google Scholar
Howard, H. (2003). Pigments of English Medieval Wall Paintings. London: Archeotype Publication.Google Scholar
Kumuva, T. & Koja, N. (2011). Thermal dehydration of monohydrocalcite: Overall kinetics and physicochemical mechanisms. J Phys Chem A 115, 1049110501.Google Scholar
Lopéz, L.A., Gómez-Villba, L.S., Ramirez, S., Álvarez de Buergo, M. & Fort, R. (2011). Influence of relative humidity on the carbonation of calcium hydroxide nanoparticles and the formation of calcium polymorphs. Powder Technol 205, 263269.Google Scholar
Miller, W., Alexander, R., Chapman, N., McKinley, I. & Smellie, J. (2000). Geological Disposal of Radioactive Wastes and Natural Analogues (Series in International Business and Economics). Kiddington, Oxford: Pergamon.Google Scholar
Navarro-Gonzalez, M. (2010). Rheology and Engineering Parameters of Bitumen Modified with Polyolefins, Elastomers and Reactive Polymers, vol. 70, Schriftenreihe Kunststoff-Forschung. Univ.-Verl. der TU Berlin, Berlin: Univerlagtuberlin.Google Scholar
Robinnet, L., Spring, M., Pagès-Camagna, S., Vantelon, D. & Trecera, N. (2011). Investigation of the discoloration of smalt pigment in historic paintings by micro-X-ray absorption spectroscopy at the CoK-edge. Anal Chem 83, 51455152.Google Scholar
Santopadre, P. & Verità, M. (2006). A study of Smat and its conservation problems in two sixteenth-century wall paintings in Rome. Stud Conserv 51, 2940.Google Scholar
Cennini, C. (Ed.) ([1922] 1982). The Book of the Art of Cennino Cennini . London: Gerge Allen & Unwin.Google Scholar
Warscheid, T., Petersen, K. & Krumbein, W.E. (1990). A rapid method to demonstrate and evaluate microbial activity on decaying sandstone. Stud Conserv 35, 137147.Google Scholar
Zhou, G.T. & Zheng, Y.F. (1998). Synthesis of aragonite-type calcium carbonate overgrowth techniche at atmospheric pressure. J Mater Sci Lett 17, 905908.Google Scholar