Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T17:56:09.878Z Has data issue: false hasContentIssue false

Microanalysis Characterization of Bioactive Protein-Bound Polysaccharides Produced by Amanita Ponderosa Cultures

Published online by Cambridge University Press:  25 September 2014

Cátia Salvador
Affiliation:
Chemistry Department, University of Évora, 7000-671 Évora, Portugal Chemistry Centre of Évora, University of Évora, 7000-671 Évora, Portugal Hercules Laboratory, University of Évora, 7000-809 Évora, Portugal
M. Rosário Martins
Affiliation:
Chemistry Department, University of Évora, 7000-671 Évora, Portugal Institute of Mediterranean Agricultural and Environmental Sciences, University of Évora, 7002-554 Évora, Portugal Hercules Laboratory, University of Évora, 7000-809 Évora, Portugal
A. Teresa Caldeira*
Affiliation:
Chemistry Department, University of Évora, 7000-671 Évora, Portugal Chemistry Centre of Évora, University of Évora, 7000-671 Évora, Portugal Hercules Laboratory, University of Évora, 7000-809 Évora, Portugal
*
*Corresponding author.[email protected]
Get access

Abstract

Different compounds of edible mushrooms are responsible for their bioactivity. The ability to synthesize polysaccharides, namely protein–polysaccharide (PPS) complexes, is related to the antioxidant capacity of these compounds and present great interest in preventing a number of diseases, including cancer, cardiovascular and auto-immune diseases, and accelerated aging. Amanita ponderosa are wild edible mushrooms that grow in Mediterranean “montado” areas [Portuguese name given to cork oak (Quercus suber) and holm oak (Quercus ilex) forests]. The aim of this study was to evaluate the production of PPS complexes obtained from A. ponderosa cultures using a new microanalytical approach to quickly and easily monitor the production process. Microanalysis using Fourier-transform infrared using attenuated total reflection and Raman spectroscopy of PPS samples showed spectra compatible with identification of this type of compound in culture extracts. PPS separated by size-exclusion chromatography showed seven main complexes. Molecular weights of the main PPS complexes isolated from cultures ranged between 1.5 and 20 kDa and did not present toxicity against Artemia salina, demonstrating the potential of A. ponderosa as a source of biologically active compounds with nutraceutical value. Application of this microanalytical approach to monitoring the production of PPS compounds can be successfully applied in biotechnological processes.

Type
SPMicros Special Section
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aida, F., Shuhaimi, M., Yazid, M. & Maaru, A. (2009). Mushroom as a potential source of prebiotics: A review. Trends Food Sci Technol 20, 567575.Google Scholar
Arteiro, J., Martins, M., Salvador, C., Candeias, M., Karmali, A. & Caldeira, A. (2012). Protein-polysaccharides of Trametes versicolor: Production and biological activities. Med Chem Res 21, 937943.Google Scholar
Barros, L., Baptista, P., Correia, D., Morais, J. & Ferreira, I. (2007 a). Effects of conservation treatment and cooking on the chemical composition and antioxidant activity of Portuguese wild edible mushrooms. J Agric Food Chem 55, 47814788.Google Scholar
Barros, L., Calhelha, R., Vaz, J., Ferreira, I., Baptista, P. & Estevinho, L. (2007 b). Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms. Eur Food Res Technol 225, 151156.Google Scholar
Barros, L., Cruz, T., Baptista, P., Estevinho, L. & Ferreira, I. (2008 a). Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem Toxicol 46, 27422747.Google Scholar
Barros, L., Falcão, S., Baptista, P., Freire, C., Vilas-Boas, M. & Ferreira, I. (2008 b). Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chem 111, 6166.Google Scholar
Barros, L., Ferreira, M., Queirós, B., Ferreira, I. & Baptista, P. (2007 c). Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem 103, 413419.Google Scholar
Barros, L., Venturini, B., Baptista, P., Estevinho, L. & Ferreira, I. (2008 c). Chemical composition and biological properties of Portuguese wild mushrooms: A comprehensive study. J Agric Food Chem 56, 38563862.Google Scholar
Belton, P.S., Colquhoun, I.J., Grant, A., Wellner, N., Field, J.M., Shewry, P.R. & Tatham, A.S. (1995). FT-IR and NMR studies on the hydration of a high-Mr subunit of glutenin. Int J Biol Macromol 17, 7480.Google Scholar
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248254.Google Scholar
Caldeira, A.T., Salvador, C., Pinto, F., Arteiro, J.M. & Martins, M.R. (2009). MSP-PCR and RAPD molecular biomarkers to characterize Amanita ponderosa mushrooms. Ann Microbiol 59(3), 16.Google Scholar
Cheng, J., Lin, C., Lur, H., Chen, H. & Lu, M. (2008). Properties and biological functions of polysaccharides and ethanolic extracts isolated from medicinal fungus Fomitopsis pinicola . Process Biochem 43, 829834.Google Scholar
Cheung, Y., Siu, K., Liu, Y. & Wu, J. (2012). Molecular properties and antioxidant activities of polysaccharide–protein complexes from selected mushrooms by ultrasound-assisted extraction. Process Biochem 47, 892895.Google Scholar
Cui, J. & Chisti, Y. (2003). Polysaccharopeptides of Coriolus versicolor: Physiological activity, uses, and production. Biotechnol Adv 21, 109122.Google Scholar
Dubois, M., Gilles, K., Hamilton, J., Rebers, P. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Anal Chem 28, 350356.Google Scholar
Elmastas, M., Isildak, O., Turkekul, I. & Temur, N. (2007). Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J Food Compost Anal 20, 337345.Google Scholar
Ferreira, I., Baptista, P., Vilas-Boas, M. & Barros, L. (2007). Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem 100, 15111516.Google Scholar
Ferreira, I., Barros, L. & Abreu, R. (2009). Antioxidants in wild mushrooms. Curr Med Chem 16(12), 15431560.Google Scholar
Gern, R., Wisbeck, E., Rampinelli, J., Ninow, J. & Furlan, S. (2008). Alternative medium for production of Pleurotus ostreatus biomass and potential antitumor polysaccharides. Bioresour Technol 99, 7682.Google Scholar
Hearst, R., Nelson, D., McCollum, G., Millar, B., Maeda, Y., Goldsmith, C., Rooney, P., Loughrey, A., Rao, J. & Moore, J. (2009). An examination of antibacterial and antifungal properties of constituents of shiitake (Lentinula edodes) and oyster (Pleurotus ostreatus) mushrooms. Complement Ther Clin Pract 15, 57.Google Scholar
Jayakumar, T., Ramesh, E. & Geraldine, P. (2006). Antioxidant activity of the oyster mushroom, Pleurotus ostreatus, on CCl4-induced liver injury in rats. Food Chem Toxicol 44, 19891996.Google Scholar
Josic, D., Horn, H., Schulz, P., Schwinn, H. & Britsch, L. (1998). Size-exclusion chromatography of plasma proteins with high molecular masses. J Chromatogr A 796, 289298.Google Scholar
Lee, C., Yang, X. & Wan, J. (2006). The culture duration affects the immunomodulatory and anticancer effect of polysaccharopeptide derived from Coriolus versicolor . Enzyme Microb Technol 38, 1421.Google Scholar
Lee, J., Gan, H., Latiff, S., Chuah, C., Lee, W., Yang, Y., Loo, B., Ng, S. & Gagnon, P. (2012). Principles and applications of steric exclusion chromatography. J Chromatogr A 1270, 162170.Google Scholar
Li, S., Wang, D., Tian, W., Wang, X., Zhao, J., Liu, Z. & Chen, R. (2008). Characterization and anti-tumor activity of a polysaccharide from Hedysarum polybotrys Hand-Mazz. Carbohydr Polymers 73, 344350.Google Scholar
Li, X., Zhou, A. & Li, X. (2007). Inhibition of Lycium barbarum polysaccharides and Ganoderma lucidum polysaccharides against oxidative injury induced by c-irradiation in rat liver mitochondria. Carbohydr Polymers 69, 172178.Google Scholar
Lin, E. & Sung, S. (2006). Cultivating conditions influence exopolysaccharide production by the edible basidiomycete Antrodia cinnamomea in submerged culture. Int J Food Microbiol 108, 182187.Google Scholar
Lu, Z., Tao, W., Zou, X., Fu, H. & Ao, Z. (2007). Protective effects of mycelia of Antrodia camphorata and Armillariella tabescens in submerged culture against ethanol-induced hepatic toxicity in rats. J Ethnopharmacol 110, 160164.Google Scholar
Malfait, T., Van Dael, M. & Van Cauwelaert, F. (1989). Molecular structure of carrageenans and kappa oligomers: A Raman spectroscopic study. Int J Biol Macromol 11, 259264.Google Scholar
Moreno-Rojas, R., Díaz-Valverde, A., Moreno-Arroyo, B., González, T., Capote, C. (2004). Mineral content of gurumelo (Amanita ponderosa). Food Chem 85, 325330.Google Scholar
Na, Y.S., Kim, W.J., Kim, S.M., Park, J.K., Lee, S.M., Kim, S.O., Synytsya, A. & Park, Y. (2010). Purification, characterization and immunostimulating activity of water-soluble polysaccharide isolated from Capsosiphon fulvescens . Int Immunopharmacol 10, 364370.Google Scholar
Palacios, I., García-Lafuente, A., Guillamón, E. & Villares, A. (2012). Novel isolation of water-soluble polysaccharides from the fruiting bodies of Pleurotus ostreatus mushrooms. Carbohydr Res 358, 7277.Google Scholar
Park, F.S. (1971). Application of I.R. Spectroscopy in Biochemistry, Biology and Medicine. New York, NY: Plenum.Google Scholar
Pereira, E., Barros, L., Martins, A. & Ferreira, I. (2012). Towards chemical and nutritional inventory of Portuguese wild edible mushrooms in different habitats. Food Chem 130, 394403.Google Scholar
Pereira, L., Amado, A., Critchley, A., Velde, F. & Ribeiro-Claro, P. (2009). Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocolloids 23, 19031909.Google Scholar
Rao, J., Smyth, T., Millar, B. & Moore, J. (2009). Antimicrobial properties of shiitake mushrooms (Lentinula edodes). Int J Antimicrob Agents 33, 591592.Google Scholar
Reis, F., Barros, L., Martins, A. & Ferreira, I. (2012). Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food Chem Toxicol 50, 191197.Google Scholar
Salvador, C., Martins, M.R., Candeias, M.F., Karmali, A., Arteiro, J.M. & Caldeira, A.T. (2012). Characterization and biological activities of protein-bound polysaccharides produced by cultures of Pleurotus ostreatus . J Agric Sci Technol A 2, 12961306.Google Scholar
Salvador, C., Martins, M.R., Arteiro, J.M. & Caldeira, A.T. (2014). Molecular evaluation of some Amanita ponderosa and the fungal strains living in association with these mushrooms in the southwestern Iberian Peninsula. Anal Microbiol. 64, 11791187.Google Scholar
Salvador, C., Martins, M.R., Vicente, H., Neves, J., Arteiro, J.M. & Caldeira, A.T. (2013). Modelling molecular and inorganic data of Amanita ponderosa mushrooms using artificial neural networks. Agrofor Syst 87, 295302.Google Scholar
Synytsya, A., Mícková, K., Synytsya, A., Jablonsky, I., Spevácek, J., Erban, V., Kováríková, E. & Copíková, J. (2009). Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr Polymers 76, 548556.Google Scholar
Tsumuraya, Y. & Misaki, A. (1979). Structure of the water-insoluble a-D-glucan of Streptocossus salivarius HHT. Carbohydr Research 74, 217225.Google Scholar
Vaz, J., Barros, L., Martins, A., Morais, J., Vasconcelos, M. & Ferreira, I. (2011 a). Phenolic profile of seventeen Portuguese wild mushrooms. LWT – Food Sci Technol 44, 343346.Google Scholar
Vaz, J., Barros, L., Martins, A., Santos-Buelga, C., Vasconcelos, M. & Ferreira, I. (2011 b). Chemical composition of wild edible mushrooms and antioxidant properties of their water soluble polysaccharidic and ethanolic fractions. Food Chem 126, 610616.Google Scholar
Wasser, S. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60, 258274.Google Scholar
Wong, J. & Chye, F. (2009). Antioxidant properties of selected tropical wild edible mushrooms. J Food Compost Anal 22, 269277.Google Scholar
Yang, L. & Zhang, L. (2009). Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydr Polymers 76, 349361.Google Scholar
Yuen, S., Choi, S., Phillips, D. & Ma, C. (2009). Raman and FTIR spectroscopic study of carboxymethylated non-starch polysaccharides. Food Chem 114, 10911098.Google Scholar
Zhang, M., Cui, S., Cheung, P. & Wang, Q. (2007). Antitumor polysaccharides from mushrooms: A review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Technol 18, 419.Google Scholar