Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T14:27:43.310Z Has data issue: false hasContentIssue false

Lithium Enhances Autophagy and Cell Death in Skin Melanoma: An Ultrastructural and Immunohistochemical Study

Published online by Cambridge University Press:  20 May 2022

Iuliia Taskaeva*
Affiliation:
Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Timakova str. 2, 630060 Novosibirsk, Russia
Izabella Gogaeva
Affiliation:
Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Timakova str. 2, 630060 Novosibirsk, Russia
Anastasia Shatruk
Affiliation:
Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Timakova str. 2, 630060 Novosibirsk, Russia
Nataliya Bgatova
Affiliation:
Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Timakova str. 2, 630060 Novosibirsk, Russia
*
*Corresponding author: Iuliia Taskaeva, E-mail: [email protected]
Get access

Abstract

Lithium is an inhibitor of glycogen synthase kinase 3 beta, which is traditionally used in the treatment of bipolar disorders and has antitumor effects. The aim of the current study was to determine if lithium salt causes autophagy and apoptosis in skin melanoma cells to enhance cell death. Light microscopy, transmission electron microscopy, immunohistochemistry, and immunofluorescence were used to study the mechanism of action of lithium carbonate in B16 melanoma cells in vivo. Proliferating cell nuclear antigen immunofluorescence assay revealed that the proliferation of B16 melanoma cells was suppressed by lithium treatment for 7 days. Electron microscopy demonstrated a significant increase in the number of autophagic vacuoles in lithium-treated cells relative to control. In addition, levels of autophagy markers LC3 beta and LAMP1 found in lithium-treated tumor xenografts were higher than levels of these markers in the control tumors. Lithium induced caspase-3 expression and apoptotic cell death in tumor cells. Thus, lithium carbonate is the compound that inhibits cell proliferation and stimulates cell death in melanoma cells through induction of autophagy and apoptosis. Stimulation of autophagy by lithium could contribute to the development of autophagic cell death in tumor cells.

Type
Biological Applications
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asgari, MM, Chien, AJ, Tsai, AL, Fireman, B & Quesenberry, CP Jr. (2017). Association between lithium use and melanoma risk and mortality: A population-based study. J Invest Dermatol 137, 20872091.CrossRefGoogle ScholarPubMed
Ballin, A, Aladjem, M, Banyash, M, Boichis, H, Barzilay, Z, Gal, R & Witz, IP (1983). The effect of lithium chloride on tumour appearance and survival of melanoma-bearing mice. Br J Cancer 48, 8387.CrossRefGoogle ScholarPubMed
Beyaert, R, Vanhaesebroeck, B, Suffys, P, Van Roy, F & Fiers, W (1989). Lithium chloride potentiates tumor necrosis factor-mediated cytotoxicity in vitro and in vivo. Proc Natl Acad Sci U S A 86, 94949498.CrossRefGoogle ScholarPubMed
Carr, S, Smith, C & Wernberg, J (2020). Epidemiology and risk factors of melanoma. Surg Clin North Am 100, 112.CrossRefGoogle ScholarPubMed
Chopra, A, Sharma, R & Rao, UNM (2020). Pathology of melanoma. Surg Clin North Am 100, 4359.CrossRefGoogle ScholarPubMed
Degterev, A, Huang, Z, Boyce, M, Li, Y, Jagtap, P, Mizushima, N, Cuny, GD, Mitchison, TJ, Moskowitz, MA & Yuan, J (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1, 112119.CrossRefGoogle ScholarPubMed
Erdal, E, Ozturk, N, Cagatay, T, Eksioglu-Demiralp, E & Ozturk, M (2005). Lithium-mediated downregulation of PKB/akt and cyclin E with growth inhibition in hepatocellular carcinoma cells. Int J Cancer 115, 903910.CrossRefGoogle ScholarPubMed
Furuta, T, Sabit, H, Dong, Y, Miyashita, K, Kinoshita, M, Uchiyama, N, Hayashi, Y, Hayashi, Y, Minamoto, T & Nakada, M (2017). Biological basis and clinical study of glycogen synthase kinase – 3β-targeted therapy by drug repositioning for glioblastoma. Oncotarget 8, 2281122824.CrossRefGoogle ScholarPubMed
Gao, S, Li, S, Duan, X, Gu, Z, Ma, Z, Yuan, X, Feng, X & Wang, H (2017). Inhibition of glycogen synthase kinase 3 beta (GSK3β) suppresses the progression of esophageal squamous cell carcinoma by modifying STAT3 activity. Mol Carcinog 56, 23012316.CrossRefGoogle ScholarPubMed
Glick, D, Barth, S & Macleod, KF (2010). Autophagy: Cellular and molecular mechanisms. J Pathol 221, 312.CrossRefGoogle ScholarPubMed
Guttuso, T Jr. (2019). High lithium levels in tobacco may account for reduced incidences of both Parkinson's disease and melanoma in smokers through enhanced β-catenin-mediated activity. Med Hypotheses 131, 109302.CrossRefGoogle ScholarPubMed
Han, S, Meng, L, Jiang, Y, Cheng, W, Tie, X, Xia, J & Wu, A (2017). Lithium enhances the antitumour effect of temozolomide against TP53 wild-type glioblastoma cells via NFAT1/FasL signalling. Br J Cancer 116, 13021311.CrossRefGoogle ScholarPubMed
Han, W, Xie, J, Li, L, Liu, Z & Hu, X (2009). Necrostatin-1 reverts shikonin-induced necroptosis to apoptosis. Apoptosis 14, 674686.CrossRefGoogle Scholar
Hurley, JH & Young, LN (2017). Mechanisms of autophagy initiation. Annu Rev Biochem 86, 225244.CrossRefGoogle ScholarPubMed
Klionsky, DJ, Abdelmohsen, K, Abe, A, et al. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1222.CrossRefGoogle Scholar
Kozar, I, Margue, C, Rothengatter, S, Haan, C & Kreis, S (2019). Many ways to resistance: How melanoma cells evade targeted therapies. Biochim Biophys Acta Rev Cancer 1871, 313322.CrossRefGoogle ScholarPubMed
Li, L, Song, H, Zhong, L, Yang, R, Yang, XQ, Jiang, KL & Liu, BZ (2015). Lithium chloride promotes apoptosis in human leukemia NB4 cells by inhibiting glycogen synthase kinase-3 beta. Int J Med Sci 12, 805810.CrossRefGoogle ScholarPubMed
Liu, H, He, Z, von Rütte, T, Yousefi, S, Hunger, RE & Simon, HU (2013). Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci Transl Med 5, 202ra123.CrossRefGoogle Scholar
Liu, ZG & Jiao, D (2019). Necroptosis, tumor necrosis and tumorigenesis. Cell Stress 4, 18.CrossRefGoogle ScholarPubMed
Ma, XH, Piao, S, Wang, D, McAfee, QW, Nathanson, KL, Lum, JJ, Li, LZ & Amaravadi, RK (2011). Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clin Cancer Res 17, 34783489.CrossRefGoogle ScholarPubMed
Mariño, G, Niso-Santano, M, Baehrecke, EH & Kroemer, G (2014). Self-consumption: The interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15, 8194.CrossRefGoogle ScholarPubMed
Miracco, C, Cevenini, G, Franchi, A, Luzi, P, Cosci, E, Mourmouras, V, Monciatti, I, Mannucci, S, Biagioli, M, Toscano, M, Moretti, D, Lio, R & Massi, D (2010). Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Hum Pathol 41, 503512.CrossRefGoogle ScholarPubMed
Mota de Freitas, D, Leverson, BD & Goossens, JL (2016). Lithium in medicine: Mechanisms of action. Met Ions Life Sci 16, 557584.CrossRefGoogle Scholar
Nikoletopoulou, V, Markaki, M, Palikaras, K & Tavernarakis, N (2013). Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833, 34483459.CrossRefGoogle ScholarPubMed
Nordenberg, J, Panet, C, Wasserman, L, Malik, Z, Fuchs, A, Stenzel, KH & Novogrodsky, A (1987). The anti-proliferative effect of lithium chloride on melanoma cells and its reversion by myo-inositol. Br J Cancer 55, 4146.CrossRefGoogle ScholarPubMed
O'Donovan, TR, Rajendran, S, O'Reilly, S, O'Sullivan, GC & McKenna, SL (2015). Lithium modulates autophagy in esophageal and colorectal cancer cells and enhances the efficacy of therapeutic agents in vitro and in vivo. PLoS One 10, e0134676.CrossRefGoogle ScholarPubMed
Ouyang, L, Shi, Z, Zhao, S, Wang, FT, Zhou, TT, Liu, B & Bao, JK (2012). Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45, 487498.CrossRefGoogle ScholarPubMed
Parzych, KR & Klionsky, DJ (2014). An overview of autophagy: Morphology, mechanism, and regulation. Antioxid Redox Signal 20, 460473.CrossRefGoogle ScholarPubMed
Peixoto-da-Silva, J, Calgarotto, AK, Rocha, KR, Palmeira-Dos-Santos, C, Smaili, SS, Pereira, GJS, Pericole, FV, da Silva S Duarte, A, Saad, STO & Bincoletto, C (2018). Lithium, a classic drug in psychiatry, improves nilotinib-mediated antileukemic effects. Biomed Pharmacother 99, 237244.Google ScholarPubMed
Penso, J & Beitner, R (2003). Lithium detaches hexokinase from mitochondria and inhibits proliferation of B16 melanoma cells. Mol Genet Metab 78, 7478.CrossRefGoogle ScholarPubMed
Quiroz, JA, Gould, TD & Manji, HK (2004). Molecular effects of lithium. Mol Interv 4, 259272.CrossRefGoogle ScholarPubMed
Rahmati, M, Ebrahim, S, Hashemi, S, Motamedi, M & Moosavi, MA (2020). New insights on the role of autophagy in the pathogenesis and treatment of melanoma. Mol Biol Rep 47, 90219032.CrossRefGoogle ScholarPubMed
Richards, CH, Mohammed, Z, Qayyum, T, Horgan, PG & McMillan, DC (2011). The prognostic value of histological tumor necrosis in solid organ malignant disease: A systematic review. Future Oncol 7, 12231235.CrossRefGoogle ScholarPubMed
Sade, Y, Toker, L, Kara, NZ, Einat, H, Rapoport, S, Moechars, D, Berry, GT, Bersudsky, Y & Agam, G (2016). IP3 accumulation and/or inositol depletion: Two downstream lithium's effects that may mediate its behavioral and cellular changes. Transl Psychiatry 6, e968.CrossRefGoogle ScholarPubMed
Sarkar, S, Floto, RA, Berger, Z, Imarisio, S, Cordenier, A, Pasco, M, Cook, LJ & Rubinsztein, DC (2005). Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170, 11011111.CrossRefGoogle ScholarPubMed
Schleicher, SB, Zaborski, JJ, Riester, R, Zenkner, N, Handgretinger, R, Kluba, T, Traub, F & Boehme, KA (2017). Combined application of arsenic trioxide and lithium chloride augments viability reduction and apoptosis induction in human rhabdomyosarcoma cell lines. PLoS One 12, e0178857.CrossRefGoogle ScholarPubMed
Su, Z, Yang, Z, Xu, Y, Chen, Y & Yu, Q (2015). Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 14, 48.CrossRefGoogle ScholarPubMed
Sukumaran, P, Nascimento Da Conceicao, V, Sun, Y, Ahamad, N, Saraiva, LR, Selvaraj, S & Singh, BB (2021). Calcium signaling regulates autophagy and apoptosis. Cells 10, 2125.CrossRefGoogle ScholarPubMed
Takahashi, Y, Meyerkord, CL, Hori, T, Runkle, K, Fox, TE, Kester, M, Loughran, TP & Wang, HG (2011). Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy. Autophagy 7, 6173.CrossRefGoogle ScholarPubMed
Tang, DY, Ellis, RA & Lovat, PE (2016). Prognostic impact of autophagy biomarkers for cutaneous melanoma. Front Oncol 6, 236.CrossRefGoogle ScholarPubMed
Tao, R, Sun, WY, Yu, DH, Qiu, W, Yan, WQ, Ding, YH, Wang, GY & Li, HJ (2017). Sodium cantharidinate induces HepG2 cell apoptosis through LC3 autophagy pathway. Oncol Rep 38, 12331239.CrossRefGoogle ScholarPubMed
Taskaeva, YS & Bgatova, NP (2019). Ultrastructural changes in hepatocellular carcinoma-29 cells after treatment with lithium carbonate. Bull Exp Biol Med 167, 8790.CrossRefGoogle ScholarPubMed
Taskaeva, YS, Bgatova, NP, Dossymbekova, RS, Solovieva, AO, Miroshnichenko, SM, Sharipov, KO & Tungushbaeva, ZB (2020). In vitro effects of lithium carbonate on cell cycle, apoptosis, and autophagy in hepatocellular carcinoma-29 cells. Bull Exp Biol Med 170, 246250.CrossRefGoogle ScholarPubMed
Trnski, D, Sabol, M, Gojević, A, Martinić, M, Ozretić, P, Musani, V, Ramić, S & Levanat, S (2015). GSK3β and Gli3 play a role in activation of hedgehog-Gli pathway in human colon cancer – targeting GSK3β downregulates the signaling pathway and reduces cell proliferation. Biochim Biophys Acta 1852, 25742584.CrossRefGoogle ScholarPubMed
Tsui, MM, Tai, WC, Wong, WY & Hsiao, WL (2012). Selective G2/M arrest in a p53(Val135)-transformed cell line induced by lithium is mediated through an intricate network of MAPK and β-catenin signaling pathways. Life Sci 91, 312321.CrossRefGoogle Scholar
Wang, X, Luo, C, Cheng, X & Lu, M (2017 a). Lithium and an EPAC-specific inhibitor ESI-09 synergistically suppress pancreatic cancer cell proliferation and survival. Acta Biochim Biophys Sin (Shanghai) 49, 573580.CrossRefGoogle Scholar
Wang, Y, Zhang, Q, Wang, B, Li, P & Liu, P (2017 b). Licl treatment induces programmed cell death of schwannoma cells through AKT- and MTOR-mediated necroptosis. Neurochem Res 42, 23632371.CrossRefGoogle ScholarPubMed
Xie, Q, Liu, Y & Li, X (2020). The interaction mechanism between autophagy and apoptosis in colon cancer. Transl Oncol 13, 100871.CrossRefGoogle Scholar
Zassadowski, F, Pokorna, K, Ferre, N, Guidez, F, Llopis, L, Chourbagi, O, Chopin, M, Poupon, J, Fenaux, P, Ann Padua, R, Pla, M, Chomienne, C & Cassinat, B (2015). Lithium chloride antileukemic activity in acute promyelocytic leukemia is GSK-3 and MEK/ERK-dependent. Leukemia 29, 22772284.CrossRefGoogle ScholarPubMed