Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T02:22:24.647Z Has data issue: false hasContentIssue false

Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study

Published online by Cambridge University Press:  30 January 2017

Alexandre La Fontaine*
Affiliation:
School of Aerospace, Mechanical, Mechatronic Engineering, The University of Sydney, NSW 2006, Australia Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
Sandra Piazolo
Affiliation:
Department of Earth and Planetary Science, Macquarie University, NSW 2109, Australia
Patrick Trimby
Affiliation:
Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
Limei Yang
Affiliation:
Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
Julie M. Cairney
Affiliation:
School of Aerospace, Mechanical, Mechatronic Engineering, The University of Sydney, NSW 2006, Australia Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
*
*Corresponding author. [email protected]
Get access

Abstract

The application of atom probe tomography to the study of minerals is a rapidly growing area. Picosecond-pulsed, ultraviolet laser (UV-355 nm) assisted atom probe tomography has been used to analyze trace element mobility within dislocations and low-angle boundaries in plastically deformed specimens of the nonconductive mineral zircon (ZrSiO4), a key material to date the earth’s geological events. Here we discuss important experimental aspects inherent in the atom probe tomography investigation of this important mineral, providing insights into the challenges in atom probe tomography characterization of minerals as a whole. We studied the influence of atom probe tomography analysis parameters on features of the mass spectra, such as the thermal tail, as well as the overall data quality. Three zircon samples with different uranium and lead content were analyzed, and particular attention was paid to ion identification in the mass spectra and detection limits of the key trace elements, lead and uranium. We also discuss the correlative use of electron backscattered diffraction in a scanning electron microscope to map the deformation in the zircon grains, and the combined use of transmission Kikuchi diffraction and focused ion beam sample preparation to assist preparation of the final atom probe tip.

Type
Materials Science (Nonmetals)
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Affatigato, M. (2015). Modern Glass Characterization. Wiley: The American Ceramic Society.Google Scholar
Babinsky, K., De Kloe, R., Clemens, H. & Primig, S. (2014 a). A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction. Ultramicroscopy 144, 918.CrossRefGoogle ScholarPubMed
Babinsky, K., Weidow, J., Knabl, W., Lorich, A., Leitner, H. & Primig, S. (2014 b). Atom probe study of grain boundary segregation in technically pure molybdenum. Mater Charact 87, 95103.Google Scholar
Bachhav, M., Danoix, F., Hannoyer, B., Bassat, J.M. & Danoix, R. (2013). Investigation of O-18 enriched hematite (α-Fe2O3) by laser assisted atom probe tomography. Int J Mass Spectrom 335(0), 5760.CrossRefGoogle Scholar
Bachhav, M., Danoix, R., Danoix, F., Hannoyer, B., Ogale, S. & Vurpillot, F. (2011 a). Investigation of wüstite (Fe1−xO) by femtosecond laser assisted atom probe tomography. Ultramicroscopy 111(6), 584588.Google Scholar
Bachhav, M.N., Danoix, R., Vurpillot, F., Hannoyer, B., Ogale, S.B. & Danoix, F. (2011 b). Evidence of lateral heat transfer during laser assisted atom probe tomography analysis of large band gap materials. Appl Phys Lett 99(8), 084101084103.CrossRefGoogle Scholar
Baik, S.-I., Yin, X. & Seidman, D.N. (2013). Correlative atom-probe tomography and transmission electron microscope study of a chemical transition in a spinel on an oxidized nickel-based superalloy. Scr Mater 68(11), 909912.CrossRefGoogle Scholar
Brodusch, N., Demers, H., Trudeau, M. & Gauvin, R. (2013). Acquisition parameters optimization of a transmission electron forward scatter diffraction system in a cold‐field emission scanning electron microscope for nanomaterials characterization. Scanning 35(6), 375386.CrossRefGoogle Scholar
Cerezo, A., Grovenor, C. & Smith, G. (1985). Pulsed laser atom probe analysis of GaAs and InAs. Appl Phys Lett 46(6), 567569.CrossRefGoogle Scholar
Currie, L.A. (1968). Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40(3), 586593.Google Scholar
David, J.D. (1996). Orientation contrast imaging of microstructures in rocks using forescatter detectors in the scanning electron microscope. Mineral Mag 60, 859869.Google Scholar
Davis, D.W., Krogh, T.E. & Williams, I.S. (2003). Historical development of zircon geochronology. Rev Mineral Geochem 53(1), 145181.Google Scholar
Dong, Y., Motta, A.T. & Marquis, E.A. (2013). Atom probe tomography study of alloying element distributions in Zr alloys and their oxides. J Nucl Mater 442(1–3), 270281.CrossRefGoogle Scholar
Felfer, P.J., Alam, T., Ringer, S.P. & Cairney, J.M. (2012). A reproducible method for damage-free site-specific preparation of atom probe tips from interfaces. Microsc Res Tech 75(4), 484491.Google Scholar
Gault, B., Menand, A., de Geuser, F., Deconihout, B. & Danoix, R. (2006). Investigation of an oxide layer by femtosecond-laser-assisted atom probe tomography. Appl Phys Lett 88(11), 114101.Google Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012). Atom Probe Microscopy. New York: Springer-Verlag.CrossRefGoogle Scholar
Gorman, B.P., Norman, A.G. & Yan, Y. (2007). Atom probe analysis of III–V and Si-based semiconductor photovoltaic structures. Microsc Microanal 13(6), 493502.Google Scholar
Harley, S.L., Kelly, N.M. & Möller, A. (2007). Zircon behaviour and the thermal histories of mountain chains. Elements 3(1), 2530.Google Scholar
Hay, D. & Dempster, T. (2009). Zircon behaviour during low-temperature metamorphism. J Petrol 50(4), 571589.Google Scholar
Hono, K., Ohkubo, T., Chen, Y., Kodzuka, M., Oh-Ishi, K., Sepehri-Amin, H., Li, F., Kinno, T., Tomiya, S. & Kanitani, Y. (2011). Broadening the applications of the atom probe technique by ultraviolet femtosecond laser. Ultramicroscopy 111(6), 576583.Google Scholar
Hudson, D., Cerezo, A. & Smith, G.D. (2009). Zirconium oxidation on the atomic scale. Ultramicroscopy 109(5), 667671.Google Scholar
Kingery, W., Francl, J., Coble, R. & Vasilos, T. (1954). Thermal conductivity: X, data for several pure oxide materials corrected to zero porosity. J Am Ceram Soc 37(2), 107110.Google Scholar
Kirchhofer, R., Diercks, D.R., Gorman, B.P., Ihlefeld, J.F., Kotula, P.G., Shelton, C.T. & Brennecka, G.L. (2014). Quantifying compositional homogeneity in Pb(Zr,Ti)O3 using atom probe tomography. J Am Ceram Soc 97(9), 26772697.Google Scholar
Kruska, K., Lozano-Perez, S., Saxey, D.W., Terachi, T., Yamada, T. & Smith, G.D.W. (2012). Nanoscale characterisation of grain boundary oxidation in cold-worked stainless steels. Corros Sci 63(0), 225233.CrossRefGoogle Scholar
Kunicki, T., Beermann, D., Geiser, B., Oltman, E., O’Neill, R. & Larson, D. (2006). Atom probe data reconstruction, visualization and analysis with the Imago Visualization and Analysis System (IVAS). In 19th International Vacuum Nanoelectronics Conference, 2006 and the 2006 50th International Field Emission Symposium, IVNC/IFES 2006, Technical Digest, IEEE, Guilin, China.Google Scholar
La Fontaine, A., Gault, B., Breen, A., Stephenson, L., Ceguerra, A.V., Yang, L., Nguyen, T.D., Zhang, J., Young, D.J. & Cairney, J.M. (2015 a). Interpreting atom probe data from chromium oxide scales. Ultramicroscopy 159, 354359.Google Scholar
La Fontaine, A., Yen, H.-W., Felfer, P.J., Ringer, S.P. & Cairney, J.M. (2015 b). Atom probe study of chromium oxide spinels formed during intergranular corrosion. Scr Mater 99, 14.Google Scholar
Larson, D., Alvis, R., Lawrence, D., Prosa, T., Ulfig, R., Reinhard, D., Clifton, P., Gerstl, S., Bunton, J. & Lenz, D. (2008). Analysis of bulk dielectrics with atom probe tomography. Microsc Microanal 14(S2), 12541255.Google Scholar
Larson, D.J., Prosa, T.J., Ulfig, R.M., Geiser, B.P., Kelly, T.F. & Humphreys, C.J. (2013). Local Electrode Atom Probe Tomography: A User’s Guide . New York: Springer.Google Scholar
Marquis, E.A., Yahya, N.A., Larson, D.J., Miller, M.K. & Todd, R.I. (2010). Probing the improbable: Imaging C atoms in alumina. Mater Today 13(10), 3436.CrossRefGoogle Scholar
Mazumder, B., Vella, A., Deconihout, B. & Al-Kassab, T.A. (2011). Evaporation mechanisms of MgO in laser assisted atom probe tomography. Ultramicroscopy 111(6), 571575.Google Scholar
Müller, M., Saxey, D.W., Smith, G.D. & Gault, B. (2011). Some aspects of the field evaporation behaviour of GaSb. Ultramicroscopy 111(6), 487492.Google Scholar
Oberdorfer, C., Stender, P., Reinke, C. & Schmitz, G. (2007). Laser-assisted atom probe tomography of oxide materials. Microsc Microanal 13(5), 342346.Google Scholar
Piazolo, S., La Fontaine, A., Trimby, P., Harley, S., Yang, L., Armstrong, R. & Cairney, J.M. (2016). Deformation-induced trace element redistribution in zircon revealed using atom probe tomography. Nat Commun 7, 10490.Google Scholar
Reddy, S.M., Timms, N.E., Trimby, P., Kinny, P.D., Buchan, C. & Blake, K. (2006). Crystal-plastic deformation of zircon: A defect in the assumption of chemical robustness. Geology 34(4), 257260.CrossRefGoogle Scholar
Saxey, D.W. (2011). Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111(6), 473479.Google Scholar
Scherer, E., Münker, C. & Mezger, K. (2001). Calibration of the lutetium-hafnium clock. Science 293(5530), 683687.Google Scholar
Stiller, K., Thuvander, M., Povstugar, I., Choi, P. & Andrén, H.-O. (2016). Atom probe tomography of interfaces in ceramic films and oxide scales. MRS Bull 41(1), 3539.CrossRefGoogle Scholar
Stiller, K., Viskari, L., Sundell, G., Liu, F., Thuvander, M., Andrén, H.-O., Larson, D., Prosa, T. & Reinhard, D. (2013). Atom probe tomography of oxide scales. Oxid Metal 79(3–4), 227238.Google Scholar
Sundell, G., Thuvander, M. & Andrén, H.O. (2012). Enrichment of Fe and Ni at metal and oxide grain boundaries in corroded Zircaloy-2. Corros Sci 65, 1012.Google Scholar
Trimby, P.W. (2012). Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. Ultramicroscopy 120, 1624.Google Scholar
Trimby, P.W., Cao, Y., Chen, Z., Han, S., Hemker, K.J., Lian, J., Liao, X., Rottmann, P., Samudrala, S. & Sun, J. (2014). Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope. Acta Mater 62, 6980.Google Scholar
Tsukada, M., Tamura, H., McKenna, K.P., Shluger, A.L., Chen, Y.M., Ohkubo, T. & Hono, K. (2011). Mechanism of laser assisted field evaporation from insulating oxides. Ultramicroscopy 111(6), 567570.Google Scholar
Valley, J.W., Cavosie, A.J., Ushikubo, T., Reinhard, D.A., Lawrence, D.F., Larson, D.J., Clifton, P.H., Kelly, T.F., Wilde, S.A., Moser, D.E. & Spicuzza, M.J. (2014). Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat Geosci 7(3), 219223.Google Scholar
Valley, J.W., Reinhard, D.A., Cavosie, A.J., Ushikubo, T., Lawrence, D.F., Larson, D.J., Kelly, T.F., Snoeyenbos, D.R. & Strickland, A. (2015). Presidential address. Nano-and micro-geochronology in Hadean and Archean zircons by atom-probe tomography and SIMS: New tools for old minerals. Am Mineral 100(7), 13551377.Google Scholar
Vurpillot, F., Houard, J., Vella, A. & Deconihout, B. (2009). Thermal response of a field emitter subjected to ultra-fast laser illumination. J Phys D Appl Phys 42(12), 125502.CrossRefGoogle Scholar
Wilkes, T.J., Titchmarsh, J.M., Smith, G.D.W., Smith, D.A., Morris, R.F., Johnston, S., Godfrey, T.J. & Birdseye, P. (1972). The fracture of field-ion microscope specimens. J Phys D Appl Phys 5(12), 2226.Google Scholar
Williams, I., Compston, W., Black, L., Ireland, T. & Foster, J. (1984). Unsupported radiogenic Pb in zircon: A cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages. Contrib Mineral Petrol 88(4), 322327.CrossRefGoogle Scholar
Supplementary material: File

La Fontaine supplementary material

Tables S1-S4

Download La Fontaine supplementary material(File)
File 752.8 KB