Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T05:07:35.630Z Has data issue: false hasContentIssue false

Key Parameters Affecting Quantitative Analysis of STEM-EDS Spectrum Images

Published online by Cambridge University Press:  08 April 2010

Chad M. Parish*
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, USA
Luke N. Brewer
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

In this article, we use simulated and experimental data to explore how three operator-controllable parameters—(1) signal level, (2) detector resolution, and (3) number of factors chosen for analysis—affect quantitative analyses of scanning transmission electron microscopy–energy dispersive X-ray spectroscopy spectrum images processed by principal component analysis (PCA). We find that improvements in both signal level and detector resolution improve the precision of quantitative analyses, but that signal level is the most important. We also find that if the rank of the PCA solution is not chosen properly, it may be possible to improperly fit the underlying data and degrade the accuracy of results. Additionally, precision is degraded in the case when too many factors are included in the model.

Type
Instrumentation and Software: Development and Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bentley, J. & Anderson, I.M. (1996). Spectrum lines across planar interfaces by energy-filtered TEM. In Proceedings of Microscopy and Microanalysis 1996, Bailey, G.W., Corbett, J.M., Dimlich, R.V.W., Michael, J.R. & Zaluzec, N.J. (Eds.), pp. 532533. San Francisco: San Francisco Press.Google Scholar
Bonnet, N. (1998). Multivariate statistical methods for the analysis of microscope image series: Applications in materials science. J Microsc-Oxford 190, 218.CrossRefGoogle Scholar
Bonnet, N., Brun, N. & Colliex, C. (1999). Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis. Ultramicroscopy 77(3–4), 97112.CrossRefGoogle Scholar
Borglund, N., Astrand, P.-G. & Csillag, S. (2005). Improved background removal method using principal components analysis for spatially resolved electron energy loss spectroscopy. Microsc Microanal 11, 8896.CrossRefGoogle ScholarPubMed
Bosman, M., Watanabe, M., Alexander, D.T.L. & Keast, V.J. (2006). Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy 106(11–12), 10241032.CrossRefGoogle ScholarPubMed
Brennecka, G.L., Parish, C.M., Tuttle, B.A., Brewer, L.N. & Rodriguez, M.A. (2008). Reversibility of the perovskite-to-fluorite phase transformation in lead-based thin and ultrathin films. Adv Mater 20(8), 14071411.CrossRefGoogle Scholar
Brewer, L.N., Kotula, P.G. & Michael, J.R. (2008). Multivariate statistical approach to electron backscattered diffraction. Ultramicroscopy 108, 567578.CrossRefGoogle ScholarPubMed
Burke, M.G., Watanabe, M., Williams, D.B. & Hyde, J.M. (2006). Quantitative characterization of nanoprecipitates in irradiated low-alloy steels: Advances in the application of FEG-STEM quantitative microanalysis to real materials. J Mater Sci 41(14), 45124522.CrossRefGoogle Scholar
Chalmond, B. & Girard, S.C. (1999). Nonlinear modeling of scattered multivariate data and its application to shape change. IEEE Trans Pattern Anal 21(5), 422432.CrossRefGoogle Scholar
Cliff, G. & Lorimer, G.W. (1975). The quantitative analysis of thin specimens. J Microsc 103(2), 203207.CrossRefGoogle Scholar
de Juan, A., Maeder, M., Hancewicz, T. & Tauler, R. (2008). Use of local rank-based spatial information for resolution of spectroscopic images. J Chemometrics 22, 291298.CrossRefGoogle Scholar
Doyle, B.L., Provencio, P.P., Kotula, P.G., Antolak, A.J., Ryan, C.G., Campbell, J.L. & Barrett, K. (2006). PIXE-quantified AXSIA: Elemental mapping by multivariate spectral analysis. Nucl Instrum Methods B 249, 828832.CrossRefGoogle Scholar
Friel, J.J. & Lyman, C.E. (2006). X-ray mapping in electron-beam instruments. Microsc Microanal 12(1), 225.CrossRefGoogle ScholarPubMed
Goldstein, J.I., Williams, D.B. & Cliff, G. (1986). Quantitative X-ray analysis. In Principles of Analytical Electron Microscopy, Joy, D.C., Romig, A.D. Jr. & Goldstein, J.I. (Eds.), pp. 155217. New York: Plenum.CrossRefGoogle Scholar
Hajati, S., Tougaard, S., Walton, J. & Fairley, N. (2008). Noise reduction procedures applied to XPS imaging of depth distribution of atoms on the nanoscale. Surf Sci 602(18), 30643070.CrossRefGoogle Scholar
Herzing, A.A., Watanabe, M., Edwards, J.K., Conte, M., Tang, Z.R., Hutchings, G.J. & Kiely, C.J. (2008). Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discuss 138, 337351.CrossRefGoogle Scholar
Jolliffee, I.T. (2002). Principal Component Analysis, 2nd ed.New York: Springer.Google Scholar
Keenan, M.R. (2007). Multivariate analysis of spectral images composed of count data. In Techniques and Applications of Hyperspectral Image Analysis, Grahn, H.F. & Geladi, P. (Eds.), pp. 89126. Chichester, U.K.: John Wiley & Sons.CrossRefGoogle Scholar
Keenan, M.R. (2009). Exploiting spatial-domain simplicity in spectral image analysis. Surf Interface Anal 41, 7987.CrossRefGoogle Scholar
Keenan, M.R. & Kotula, P.G. (2004a). Accounting for Poisson noise in the multivariate analysis of ToF-SIMS spectrum images. Surf Interface Anal 36(3), 203212.CrossRefGoogle Scholar
Keenan, M.R. & Kotula, P.G. (2004b). Optimal scaling of TOF-SIMS spectrum-images prior to multivariate statistical analysis. Appl Surf Sci 231-232, 240244.CrossRefGoogle Scholar
Keenan, M.R., Smentkowski, V.S., Ohlhausen, J.A. & Kotula, P.G. (2008). Mitigating dead-time effects during multivariate statistical analysis of ToF-SIMS spectral images. Surf Interface Anal 40, 97106.CrossRefGoogle Scholar
Kotula, P.G. & Keenan, M.R. (2006). Application of multivariate statistical analysis to STEM X-ray spectral images: Interfacial analysis in microelectronics. Microsc Microanal 12(6), 538544.CrossRefGoogle Scholar
Kotula, P.G., Keenan, M.R. & Michael, J.R. (2003). Automated analysis of SEM X-ray spectral images: A powerful new microanalysis tool. Microsc Microanal 9(1), 117.CrossRefGoogle ScholarPubMed
Lee, J.L.S., Tyler, B.J., Wagner, M.S., Gilmore, I.S. & Seah, M.P. (2009). The development of standards and guides for multivariate analysis in surface chemical analysis. Surf Interface Anal 41, 7678.CrossRefGoogle Scholar
Malinowski, E.R. (1991). Factor Analysis in Chemistry, 2nd ed.New York: Wiley.Google Scholar
Parish, C.M., Brennecka, G.L., Tuttle, B.A. & Brewer, L.N. (2008a). Quantitative chemical analysis of fluorite-to-perovskite transformations in (Pb,La)(Zr,Ti)O3 PLZT thin-films. J Mater Res 23(11), 29442953.CrossRefGoogle Scholar
Parish, C.M., Brennecka, G.L., Tuttle, B.A. & Brewer, L.N. (2008b). Quantitative X-ray spectrum imaging of lead lanthanum zirconate titanate PLZT thin-films. J Am Ceram Soc 91(11), 36903697.CrossRefGoogle Scholar
Parish, C.M. & Brewer, L.N. (2010). Multivariate statistics applications in phase analysis of STEM-EDS spectrum images. Ultramicroscopy 110, 134143.CrossRefGoogle ScholarPubMed
Ritchie, N.W.M. (2007). Spectrum simulation in the EPQ library. Microsc Microanal 13(S2), 160161.CrossRefGoogle Scholar
Ritchie, N.W.M. (2008). DTSA-II. Washington, DC: National Institute of Standards and Technology.Google Scholar
Ritchie, N.W.M. (2009). Spectrum simulation in DTSA-II. Microsc Microanal 15(5), 454468.CrossRefGoogle ScholarPubMed
Ritchie, N.W.M., Davis, J. & Newbury, D.E. (2008). DTSA-II: A new tool for simulating and quantifying EDS spectra—Application to difficult overlaps. Microsc Microanal 14(S2), 11761177.CrossRefGoogle Scholar
Schamber, F.H. (1977). A modification of the linear least-squares fitting method which provides continuum suppression. In X-ray Fluorescence Analysis of Environmental Samples, Dzubay, T.G. (Ed.), pp. 241257. Ann Arbor, MI: Ann Arbor Scientific Publishers.Google Scholar
Smentkowski, V.S., Ostrowski, S.G. & Keenan, M.R. (2009). A comparison of multivariate statistical analysis protocols for ToF-SIMS spectral images. Surf Interface Anal 41, 8896.CrossRefGoogle Scholar
Smentkowski, V.S., Ostrowski, S.G., Kollmer, F., Schnieders, A., Keenan, M.R., Ohlhausen, J.A. & Kotula, P.G. (2008). Multivariate statistical analysis of non-mass-selected ToF-SIMS data. Surf Interface Anal 40(8), 11761182.CrossRefGoogle Scholar
Titchmarsh, J.M. (1999). EDX spectrum modeling and multivariate analysis of sub-nanometer segregation. Micron 30, 159171.CrossRefGoogle Scholar
Trebbia, P. & Bonnet, N. (1990). EELS elemental mapping with unconventional methods I. Theoretical basis: Image analysis with multivariate statistics and entropy concepts. Ultramicroscopy 34, 165178.CrossRefGoogle ScholarPubMed
Tyler, B. (2003). Interpretation of TOF-SIMS images: Multivariate and univariate approaches to image de-noising, image segmentation and compound identification. Appl Surf Sci 203, 825831.CrossRefGoogle Scholar
Walton, J. & Fairley, N. (2009). Data scaling for quantitative imaging XPS. Surf Interface Anal 41, 114118.CrossRefGoogle Scholar
Watanabe, M., Ackland, D.W., Burrows, A., Kiely, C.J., Williams, D.B., Krivanek, O.L., Dellby, N., Murfitt, M.F. & Szilagyi, Z. (2006). Improvements in the X-ray analytical capabilities of a scanning transmission electron microscope by spherical-aberration correction. Microsc Microanal 12(6), 515526.CrossRefGoogle ScholarPubMed
Williams, D.B. (1984). Practical Analytical Electron Microscopy in Materials Science. Mahwah, NJ: Philips Electron Instruments.Google Scholar
Williams, D.B. & Carter, C.B. (1996). Transmission Electron Microscopy. New York: Plenum.CrossRefGoogle Scholar
Yaguchi, T., Konno, M., Kamino, T. & Watanabe, M. (2008). Observation of three-dimensional elemental distributions of a Si device using a 360°-tilt FIB and the cold field-emission STEM system. Ultramicroscopy 108, 16031615.CrossRefGoogle Scholar
Zaluzec, N.J. (2004). XEDS systems for the next generation analytical electron microscope. Microsc Microanal 10(S2), 122123.CrossRefGoogle Scholar
Zaluzec, N.J. (2009). Detector solid angle formulas for use in X-ray energy dispersive spectroscopy. Microsc Microanal 15, 9398.CrossRefGoogle Scholar