Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T13:29:29.840Z Has data issue: false hasContentIssue false

Information Transfer in a TEM Corrected for Spherical and Chromatic Aberration

Published online by Cambridge University Press:  02 July 2010

M. Haider*
Affiliation:
Corrected Electron Optical Systems GmbH, Heidelberg, Germany
P. Hartel
Affiliation:
Corrected Electron Optical Systems GmbH, Heidelberg, Germany
H. Müller
Affiliation:
Corrected Electron Optical Systems GmbH, Heidelberg, Germany
S. Uhlemann
Affiliation:
Corrected Electron Optical Systems GmbH, Heidelberg, Germany
J. Zach
Affiliation:
Corrected Electron Optical Systems GmbH, Heidelberg, Germany
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

For the transmission electron aberration-corrected microscope (TEAM) initiative of five U.S. Department of Energy laboratories in the United States, a correction system for the simultaneous compensation of the primary axial aberrations, the spherical aberration Cs, and the chromatic aberration Cc has been developed and successfully installed. The performance of the resulting Cc /Cs-corrected TEAM instrument has been investigated thoroughly. A significant improvement of the linear contrast transfer can be demonstrated. The information about the instrument one obtains using Young's fringe method is compared for uncorrected, Cs-corrected, and Cc /Cs-corrected instruments. The experimental results agree well with simulations. The conclusions might be useful to others in understanding the process of image formation in a Cc /Cs-corrected transmission electron microscope.

Type
Special Section—Aberration-Corrected Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barthel, J. & Thust, A. (2008). Quantification of the information limit of transmission electron microscopes. Phys Rev Lett 101, 200801.CrossRefGoogle ScholarPubMed
Bernhard, W. (1980). Erprobung eines sphärisch und chromatisch korrigierten Elektronenmikroskopes. Optik 57(1), 7394.Google Scholar
Deltrap, J. (1964). Correction of spherical aberration with combined quadrupole-octopole units. Proc EUREM-3 A, pp. 4546. Prague, Czechoslovakia: Czechoslovak Academy of Sciences.Google Scholar
DOE. (2004). A twenty-year outlook. Report, Facilities for the Future of Science. Washington, D.C.: U.S. Department of Energy. Available at http://ncem.lbl.gov/TEAM-project/files/roadmap.html.Google Scholar
Doyle, P.A. & Turner, P.S. (1968). Relativistic Hartree–Fock X-ray and electron scattering factors. Acta Crystallogr A 24(3), 390397.CrossRefGoogle Scholar
Feynman, R. (1960). There's plenty of room at the bottom. Engineering and Science Magazine, February. Reprinted in Feynman, R. (1992). J Microelectromech S 1(1), 6066.CrossRefGoogle Scholar
Frank, J. (1973). The envelope of electron microscopic transfer functions for partially coherent illumination. Optik 38(5), 519536.Google Scholar
Haider, M., Löbau, U., Höschen, R., Müller, H., Uhlemann, S. & Zach, J. (2007). State of the development of a C c /C s-corrector for TEAM. Microsc Microanal 13(S2), 1156CD1157CD.CrossRefGoogle Scholar
Haider, M., Müller, H., Uhlemann, S., Zach, J., Löbau, U. & Höschen, R. (2008). Prerequisites for a C c /C s-corrected ultrahigh-resolution tem. Ultramicroscopy 108, 167178.CrossRefGoogle ScholarPubMed
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998). Electron microscopy image enhanced. Nature 392, 768769.CrossRefGoogle Scholar
Hanszen, K. & Trepte, L. (1971). Die Kontrastübertragung im Elektronenmikroskop bei partiell kohärenter Beleuchtung. Optik 33, 166182.Google Scholar
Hardy, D. (1967). Combined magnetic and electrostatic quadrupole electron lenses. Dissertation. Cambridge, UK: University of Cambridge.Google Scholar
Hely, H. (1982). Messungen an einem verbesserten korrigierten Elektronenmikroskop. Optik 60, 353370.Google Scholar
Ishizuka, K. (1980). Contrast transfer of crystal images in TEM. Ultramicroscopy 5, 5565.CrossRefGoogle Scholar
Kirkland, E. (1998). Advanced Computing in Electron Microscopy. New York: Plenum Press.CrossRefGoogle Scholar
Krivanek, O., Dellby, N. & Lupini, A. (1999). Towards sub-angstrom electron beams. Ultramicroscopy 78, 111.CrossRefGoogle Scholar
Meyer, J., Chuvilin, A., Algara-Siller, G., Biskupek, J. & Kaiser, U. (2009). Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett 9(7), 26832689.CrossRefGoogle ScholarPubMed
Möllenstedt, G. (1956). Elektronenmikroskopische Bilder mit einem nach O. Scherzer sphärisch korrigierten Objektiv. Optik 13, 209215.Google Scholar
O'Keefe, M., Allard, L. & Blom, D. (2008). Young's fringes are not evidence of HRTEM resolution. Microsc Microanal 14(S2), 834CD835CD.CrossRefGoogle Scholar
Rose, H. (1967). Über den spärischen und den chromatischen Fehler unrunder Elektronenlinsen. Optik 25, 587597.Google Scholar
Rose, H. (1970). Berechnung eines elektronenoptischen Apochromaten. Optik 32, 144164.Google Scholar
Rose, H. (1971). Abbildungseigenschaften sphärisch korrigierter elektronenoptischer Achromate. Optik 33, 124.Google Scholar
Scherzer, O. (1936). Über einige Fehler von Elektronenlinsen. Z Physik 101, 593603.CrossRefGoogle Scholar
Scherzer, O. (1939). Die theoretisch erreichbare Auflösungsgrenze des Elektronenmikroskops. Z Phys 114, 427434.CrossRefGoogle Scholar
Scherzer, O. (1947). Sphärische und chromatische Korrektur von Elektronenlinsen. Optik 2, 114132.Google Scholar
Scherzer, O. (1982). Phase tomagraphy in the corrected electron microscope. Ultramicroscopy 9, 916.CrossRefGoogle Scholar
Seeliger, R. (1951). Die sphärische Korrektur von Elektronenlinsen mittels nicht-rotationssymmetrischer Abbildungselemente. Optik 8, 311317.Google Scholar
Stadelmann, P. (1987). EMS—A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131146.CrossRefGoogle Scholar
Uhlemann, S. & Haider, M. (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109119.CrossRefGoogle Scholar
Zach, J. & Haider, M. (1995a). Aberration correction in a low voltage sem by a multipole corrector. Nucl Instrum Meth A 363, 316325.CrossRefGoogle Scholar
Zach, J. & Haider, M. (1995b). Correction of spherical and chromatic aberration in a low voltage sem. Optik 98(3), 112118.Google Scholar