Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T16:57:01.287Z Has data issue: false hasContentIssue false

The Influence of Experimental Parameters and Specimen Geometry on the Mass Spectra of Copper During Pulsed-Laser Atom-Probe Tomography

Published online by Cambridge University Press:  12 November 2014

R. Prakash Kolli*
Affiliation:
Department of Materials Science and Engineering, University of Maryland, College Park, MD 20740, USA Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
Frederick Meisenkothen
Affiliation:
Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
*
*Corresponding author. [email protected]
Get access

Abstract

We have studied the influence of experimental factors and specimen geometry on the quality of the mass spectra in copper (Cu) during pulsed-laser atom-probe tomography. We have evaluated the effects of laser pulse energy, laser pulse frequency, specimen base temperature, specimen tip radius, and specimen tip shank half-angle on the effects of mass resolving power, (mm), at full-width at half-maximum and at full-width at tenth-maximum, the tail size after the major mass-to-charge state (m/n) ratio peaks, and the mass spectra. Our results indicate that mass resolving power improves with decreasing pulse energy between 40 and 80 pJ and decreasing base temperature between 20 and 80 K. The mass resolving power also improves with increasing tip radius and shank half-angle. A pulse frequency of 250 kHz slightly improves the mass resolving power relative to 100 or 500 kHz. The tail size decreases with increasing pulse energy. The mass resolving power improves when the cooling time is reduced, which is influenced by the thermal diffusivity of Cu and the specimen base temperature.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bachhav, M., Danoix, R., Danoix, F., Hannoyer, B., Ogale, S. & Vurpillot, F. (2011). Investigation of wüstite (Fe1−xO) by femtosecond laser assisted atom probe tomography. Ultramicroscopy 111, 584588.CrossRefGoogle ScholarPubMed
Bergman, T.L., Lavine, A.S., DeWitt, D.P. & Incropera, F.P. (2011). Introduction to Heat Transfer. Hoboken, NJ: John Wiley & Sons Inc. Google Scholar
Bunton, J.H., Olson, J.D., Lenz, D.R. & Kelly, T.F. (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc Microanal 13, 418427.CrossRefGoogle ScholarPubMed
Cerezo, A., Clifton, P.H., Gomberg, A. & Smith, G.D.W. (2007). Aspects of the performance of a femtosecond laser-pulsed 3-dimensional atom probe. Ultramicroscopy 107, 720725.CrossRefGoogle ScholarPubMed
Cerezo, A., Smith, G.D.W. & Clifton, P.H. (2006). Measurement of temperature rises in the femtosecond laser pulsed three-dimensional atom probe. Appl Phys Lett 88, 154103.CrossRefGoogle Scholar
Dmitrieva, O., Choi, P., Gerstl, S.S.A., Ponge, D. & Raabe, D. (2011). Pulsed-laser atom probe studies of a precipitation hardened maraging TRIP steel. Ultramicroscopy 111, 623627.CrossRefGoogle ScholarPubMed
Haydock, R. & Kingham, D.R. (1980). Post-ionization of field-evaporated ions. Phys Rev Lett 44, 15201523.CrossRefGoogle Scholar
Kellogg, G.L. (1981). Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe. J Appl Phys 52, 5320.CrossRefGoogle Scholar
Kellogg, G.L. (1987). Pulsed laser atom probe mass spectroscopy. J Phys E Sci Instrum 20, 125.CrossRefGoogle Scholar
Kellogg, G.L. & Tsong, T.T. (1980). Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51, 11841193.CrossRefGoogle Scholar
Kelly, T.F. & Larson, D.J. (2012). Atom probe tomography 2012. Annu Rev Mater Res 42, 131.CrossRefGoogle Scholar
Kingham, D.R. (1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf Sci 116, 273301.CrossRefGoogle Scholar
Kirchhofer, R., Teague, M.C. & Gorman, B.P. (2013). Thermal effects on mass and spatial resolution during laser pulse atom probe tomography of cerium oxide. J Nucl Mater 436, 2328.CrossRefGoogle Scholar
Kolli, R.P. & Meisenkothen, F. (2014). A focused ion beam specimen preparation method to minimize gallium ion concentration in copper atom-probe tomography specimen tips. Microsc. Microanal. 20(Supplement S3), 350351.CrossRefGoogle Scholar
Li, F., Ohkubo, T., Chen, Y.M., Kodzuka, M. & Hono, K. (2011). Quantitative atom probe analyses of rare-earth-doped ceria by femtosecond pulsed laser. Ultramicroscopy 111, 589594.CrossRefGoogle ScholarPubMed
Liu, H.F. & Tsong, T.T. (1984). Numerical calculation of the temperature evolution and profile of the field ion emitter in the pulsed-laser time-of-flight atom probe. Rev Sci Instrum 55, 17791784.CrossRefGoogle Scholar
, X. (2009). Thermal conductivity modeling of copper and tungsten damascene structures. J Appl Phys 105, 094301.CrossRefGoogle Scholar
Miller, M.K. (2000). Atom Probe Tomography. New York, NY: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford/New York, NY: Clarendon Press/Oxford University Press.CrossRefGoogle Scholar
Oh-ishi, K., Mendis, C.L., Ohkubo, T. & Hono, K. (2011). Effect of laser power and specimen temperature on atom probe analyses of magnesium alloys. Ultramicroscopy 111, 715718.CrossRefGoogle ScholarPubMed
Perea, D.E., Wijaya, E., Lensch-Falk, J.L., Hemesath, E.R. & Lauhon, L.J. (2008). Tomographic analysis of dilute impurities in semiconductor nanostructures. J Solid State Chem 181, 16421649.CrossRefGoogle Scholar
Prosa, T.J. (2013). Personal communication.Google Scholar
Rossnagel, S.M. & Kuan, T.S. (2004). Alteration of Cu conductivity in the size effect regime. J Vacuum Sci Technol B 22, 240.CrossRefGoogle Scholar
Saxey, D.W. (2011). Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111, 473479.CrossRefGoogle ScholarPubMed
Seidman, D.N. (2007). Three-dimensional atom-probe tomography: Advances and applications. Annu Rev Mater Res 37, 127158.CrossRefGoogle Scholar
Sha, G. & Ringer, S.P. (2009). Effect of laser pulsing on the composition measurement of an Al–Mg–Si–Cu alloy using three-dimensional atom probe. Ultramicroscopy 109, 580584.CrossRefGoogle ScholarPubMed
Steinhögl, W., Schindler, G., Steinlesberger, G., Traving, M. & Engelhardt, M. (2004). Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J Appl Phys 97, 023706.CrossRefGoogle Scholar
Tang, F., Gault, B., Ringer, S.P. & Cairney, J.M. (2010). Optimization of pulsed laser atom probe (PLAP) for the analysis of nanocomposite Ti–Si–N films. Ultramicroscopy 110, 836843.CrossRefGoogle ScholarPubMed
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.CrossRefGoogle ScholarPubMed
Tsong, T.T. (1990). Atom-Probe Field Ion Microscopy. Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar
Vurpillot, F., Gault, B., Vella, A., Bouet, M. & Deconihout, B. (2006). Estimation of the cooling times for a metallic tip under laser illumination. Appl Phys Lett 88, 094105.CrossRefGoogle Scholar
Vurpillot, F., Houard, J., Vella, A. & Deconihout, B. (2009). Thermal response of a field emitter subjected to ultra-fast laser illumination. J Phys D Appl Phys 42, 125502.CrossRefGoogle Scholar
Xie, K.Y., Breen, A.J., Yao, L., Moody, M.P., Gault, B., Cairney, J.M. & Ringer, S.P. (2012). Overcoming challenges in the study of nitrided microalloyed steels using atom probe. Ultramicroscopy 112, 3238.CrossRefGoogle Scholar
Zhou, Y., Booth-Morrison, C. & Seidman, D.N. (2008). On the field evaporation behavior of a model Ni-Al-Cr superalloy studied by picosecond pulsed-laser atom-probe tomography. Microsc Microanal 14, 571580.CrossRefGoogle Scholar