Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T11:57:20.605Z Has data issue: false hasContentIssue false

Improving Fabrication and Application of Zach Phase Plates for Phase-Contrast Transmission Electron Microscopy

Published online by Cambridge University Press:  12 October 2012

Simon Hettler*
Affiliation:
Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), 76128 Karlsruhe, Germany
Björn Gamm
Affiliation:
Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), 76128 Karlsruhe, Germany
Manuel Dries
Affiliation:
Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), 76128 Karlsruhe, Germany
Nicole Frindt
Affiliation:
CellNetworks, BioQuant, Universität Heidelberg, 69120 Heidelberg, Germany
Rasmus R. Schröder
Affiliation:
CellNetworks, BioQuant, Universität Heidelberg, 69120 Heidelberg, Germany
Dagmar Gerthsen
Affiliation:
Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), 76128 Karlsruhe, Germany
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Zach phase plates (PPs) are promising devices to enhance phase contrast in transmission electron microscopy. The Zach PP shifts the phase of the zero-order beam by a strongly localized inhomogeneous electrostatic potential in the back focal plane of the objective lens. We present substantial improvements of the Zach PP, which overcome previous limitations. The implementation of a microstructured heating device significantly reduces contamination and charging of the PP structure and extends its lifetime. An improved production process allows fabricating PPs with reduced dimensions resulting in lower cut-on frequencies as revealed by simulations of the electrostatic potential. Phase contrast with inversion of PbSe nanoparticles is demonstrated in a standard transmission electron microscope with LaB6 cathode by applying different voltages.

Type
Techniques and Equipment Development
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alloyeau, D., Hsieh, W.K., Anderson, E.H., Hilken, L., Benner, G., Meng, X., Chen, F.R. & Kisielowsky, C. (2010). Imaging of soft and hard materials using a Boersch phase plate in a transmission electron microscope. Ultramicroscopy 110, 563570.CrossRefGoogle Scholar
Boersch, H. (1947). Über die Kontraste von Atomen im Elektronenmikroskop. Z Naturforsch 2a, 615633.Google Scholar
Cambie, R., Downing, K.H., Typke, D., Glaeser, R.M. & Jin, J. (2007). Design of a microfabricated, two-electrode phase-contrast element suitable for electron microscopy. Ultramicroscopy 107, 329339.Google Scholar
Danev, R., Glaeser, R.M. & Nagayama, K. (2009). Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy. Ultramicroscopy 109, 312325.Google Scholar
Danev, R. & Nagayama, K. (2001a). Transmission electron microscopy with Zernike phase plate. Ultramicroscopy 88, 243252.Google Scholar
Danev, R. & Nagayama, K. (2001b). Complex observation in electron microscopy. II. Direct visualization of phases and amplitudes of exit wave functions. J Phys Soc Jpn 70, 696702.Google Scholar
Gamm, B., Dries, M., Schultheiss, K., Blank, H., Rosenauer, A., Schröder, R.R. & Gerthsen, D. (2010). Object wave reconstruction by phase-plate transmission electron microscopy. Ultramicroscopy 110, 807814.Google ScholarPubMed
Müller, H., Jin, J., Danev, R., Spence, J., Padmore, H. & Glaser, R.M. (2010). Design of an electron microscope phase plate using a focused continuous-wave laser. New J Phys 12, 073011. Google Scholar
Rose, H. (2010). Theoretical aspects of image formation in the aberration-corrected electron microscope. Ultramicroscopy 110, 488499.Google Scholar
Schröder, R.R., Barton, B., Rose, H. & Benner, G. (2007). Contrast enhancement by anamorphotic phase plates in an aberration-corrected TEM. Microsc Microanal 13, 136137.Google Scholar
Schultheiss, K., Pérez-Willard, F., Barton, B., Gerthsen, D. & Schroeder, R.R. (2006). Fabrication of a Boersch phase plate for phase contrast imaging in a transmission electron microscope. Rev Sci Instrum 77, 033701. Google Scholar
Schultheiss, K., Zach, J., Gamm, B., Dries, M., Frindt, N., Schröder, R.R. & Gerthsen, D. (2010). New electrostatic phase plate for phase-contrast transmission electron microscopy and its application for wave-function reconstruction. Microsc Microanal 16, 785794.Google Scholar
Shiue, J., Chang, C.-S., Huang, S.-H., Hsu, C.-H., Tsai, J.-S., Chang, W.-H., Wu, Y.-M., Lin, Y.-C., Kuo, P.-C., Huang, Y.-S., Hwu, Y., Kai, J.-J., Tseng, F.-G. & Chen, F.-R. (2009). Phase TEM for biological imaging utilizing a Boersch electrostatic phase plate: Theory and practice. J Electron Microsc 58, 137145.Google Scholar
Zernike, F. (1942). Phase contrast, a new method for the microscopic observation of transparent objects. Physica 9, 686698.Google Scholar